Advertisement

Mixotrophy in Harmful Algal Blooms: By Whom, on Whom, When, Why, and What Next

  • Kevin J. Flynn
  • Aditee Mitra
  • Patricia M. Glibert
  • JoAnn M. Burkholder
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 232)

Abstract

The traditional view of the planktonic food web is simplistic: nutrients are consumed by phytoplankton that, in turn, support zooplankton, which ultimately support fish. This structure is the foundation of most models used to explore fisheries production, biogeochemical cycling, and climate change. In recent years, however, the importance of mixotrophs increasingly has been recognized. Mixotrophy, the combination of phototrophy and heterotrophy (the latter, including phago- and/or osmotrophy), enables planktonic protists traditionally labeled as “phytoplankton” or “microzooplankton” to function at multiple trophic levels. Mixotrophy enables primary producers to acquire nutrients directly from ingestion of prey such as bacteria and algal competitors and even from their own potential predators. Mixotrophy is not simply additive or substitutional; rather, it is synergistic. While most harmful algal species (except diatoms and cyanobacteria) are mixotrophic via phagotrophy, little is known about how these organisms modulate their phototrophic and phagotrophic activities or how the flow of energy and material through mixotrophic predator-prey interactions is altered under varying nutrient, temperature, light, pH, or pCO2 conditions. All of these factors are also rapidly changing in coastal and oceanic environments with accelerating eutrophication and climate change that, in turn, alters the potential for harmful algal blooms. Accurate parameterization, including consideration of mixotrophy in water quality or fisheries models that are used as aids to regional and/or international policy development, should be a high priority.

Notes

Acknowledgments

The authors thank the Leverhulme Trust for funding an international network (F/00 391/V), as well as the many contributors to the associated mixotrophy working groups. This is a contribution of the GEOHAB Core Research Project on HABs and Eutrophication and is number 5406 from the University of Maryland Center for Environmental Science.

References

  1. Adolf JE, Bachvaroff T, Place AR (2008) Can cryptophytes trigger toxic Karlodinium veneficum blooms in eutrophic estuaries? Harmful Algae 81:19–128Google Scholar
  2. Adolf JE, Stoecker DK, Harding LW Jr (2003) Autotrophic growth and photoacclimation of Karlodinium micrum (Dinophyceae) and Storeatula major (Cryptophyceae). J Phycol 39:1101–1108CrossRefGoogle Scholar
  3. Adolf JE, Stoecker DK, Harding LW Jr (2006) The balance of autotrophy and heterotrophy during mixotrophic growth of Karlodinium micrum. J Plankton Res 28:737–751CrossRefGoogle Scholar
  4. Allen JI, Polimene L (2011) Linking physiology to ecology: towards a new generation of plankton models. J Plankton Res 33:989–997CrossRefGoogle Scholar
  5. Baird ME, Emsley SM (1999) Towards a mechanistic model of plankton population dynamics. J Plankton Res 21:85–126CrossRefGoogle Scholar
  6. Baretta JW, Baretta-Bekker JG, Ruardij P (1996) From EMS to ERSEM, towards generic coastal ecosystem models. Aquabiology 104:197–209Google Scholar
  7. Berdalet E, Kudela R, Banas NS et al (2018) GlobalHAB: fostering international coordination on harmful algal bloom research in aquatic systems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 425–447Google Scholar
  8. Berman T, Bronk DA (2003) Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquat Microb Ecol 31:279–305CrossRefGoogle Scholar
  9. Bertin MJ, Zimba PV, Beauchesne KR et al (2012) Identification of toxic fatty acid amides isolated from the harmful alga Prymnesium parvum Carter. Harmful Algae 20:111–116CrossRefGoogle Scholar
  10. Bockstahler KR, Coats DW (1993a) Grazing of the mixotrophic dinoflagellate Gymnodinium sanguineum on ciliate populations of Chesapeake Bay. Mar Biol 116:477–487CrossRefGoogle Scholar
  11. Bockstahler KR, Coats DW (1993b) Spatial and temporal aspects of mixotrophy in Chesapeake Bay dinoflagellates. J Eukaryot Microbiol 40:49–60CrossRefGoogle Scholar
  12. Burkholder JM, Glibert PM, Skelton H (2008) Mixotrophy: a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77–93CrossRefGoogle Scholar
  13. Chatton É (1920) Les Péridiniens parasites. Morphologie, reproduction, éthologie. Arch Zool Exp Gen 59:1–475Google Scholar
  14. Christian JR (2005) Biogeochemical cycling in the oligotrophic ocean: Redfield and non-Redfield models. Limnol Oceanogr 50:646–657CrossRefGoogle Scholar
  15. Coats DW (1999) Parasitic life styles of marine dinoflagellates. J Eukaryot Microbiol 46:402–409CrossRefGoogle Scholar
  16. de Castro F, Gaedke U, Boenigk J (2009) Reverse evolution: driving forces behind the loss of acquired photosynthetic traits. PLoS One 4(12):e8465.  https://doi.org/10.1371/journal.pone.0008465CrossRefPubMedPubMedCentralGoogle Scholar
  17. Denardou-Queneherve A, Grzebyk D, Pouchus YF et al (1999) Toxicity of French strains of the dinoflagellate Prorocentrum minimum experimental and natural contaminations of mussels. Toxicon 37:1711–1719CrossRefPubMedGoogle Scholar
  18. Dorantes-Aranda JJ, García-de la Parra LM, Alonso-Rodríguez R et al (2010) Toxic effect of the harmful dinoflagellate Cochlodinium polykrikoides on the spotted rose snapper Lutjanus guttatus. Environ Toxicol 25:319–326CrossRefPubMedGoogle Scholar
  19. Drebes G (1969) Dissodinium pseudocalani sp. nov., ein parasitischer Dinoflagellat auf Copepodeneiern. Helgoländer Wiss Meeresunters 19:58–67CrossRefGoogle Scholar
  20. Fasham MJR, Ducklow HW, McKelvie SM (1990) A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J Mar Res 48:591–639CrossRefGoogle Scholar
  21. Flynn KJ (2001) A mechanistic model for describing dynamic multi-nutrient, light, temperature interactions in phytoplankton. J Plankton Res 23:977–997CrossRefGoogle Scholar
  22. Flynn KJ (2005) Modelling marine phytoplankton growth under eutrophic conditions. J Sea Res 54:92–103CrossRefGoogle Scholar
  23. Flynn KJ (2008) Use, abuse, misconceptions and insights from quota models: the Droop cell-quota model 40 years on. Oceanogr Mar Biol Annu Rev 46:1–23Google Scholar
  24. Flynn KJ (2009) Going for the slow burn: why should possession of a low maximum growth rate be advantageous for microalgae? Plant Ecol Divers 2:179–189CrossRefGoogle Scholar
  25. Flynn KJ (2010a) Ecological modelling in a sea of variable stoichiometry; dysfunctionality and the legacy of Redfield and Monod. Prog Oceanogr 84:52–65CrossRefGoogle Scholar
  26. Flynn KJ (2010b) Do external resource ratios matter? – Implications for modelling eutrophication events and controlling harmful algal blooms. J Mar Syst 83:170–180CrossRefGoogle Scholar
  27. Flynn KJ, Clark DR, Mitra A, Fabian H, Hansen PJ, Glibert PM, Wheeler GL, Stoecker DK, Blackford JC, Brownlee C (2015) Ocean acidification with (de)eutrophication will alter future phytoplankton growth and succession. Proc R Soc B 282.  https://doi.org/10.1098/rspb.2014.2604
  28. Flynn KJ, Mitra A (2009) Building the “perfect beast”: modelling mixotrophic plankton. J Plankton Res 31:965–992CrossRefGoogle Scholar
  29. Flynn KJ, Mitra A (2016) Why plankton modelers should reconsider using rectangular hyperbolic (Michaelis-Menten, Monod) descriptions of predator-prey interactions. Front Mar Sci.  https://doi.org/10.3389/fmars.2016.00165
  30. Flynn KJ, Page S, Wood G et al (1999) Variations in the maximum transport rates for ammonium and nitrate in the prymnesiophyte Emiliania huxleyi and the raphidophyte Heterosigma carterae. J Plankton Res 21:355–371CrossRefGoogle Scholar
  31. Flynn KJ, Stoecker DK, Mitra A et al (2013) Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J Plankton Res 35:3–11CrossRefGoogle Scholar
  32. Follows MJ, Dutkiewicz S, Grant S et al (2007) Emergent biogeography of microbial communities in a model ocean. Science 315:1843–1846CrossRefPubMedGoogle Scholar
  33. Gaines G, Elbrächter M (1987) Heterotrophic nutrition. In: Taylor FJR (ed) The biology of dino-flagellates. Blackwell Scientific Publications, Oxford, pp 224–268Google Scholar
  34. GEOHAB (1998) Global ecology and oceanography of harmful algal blooms: a plan for co-ordinated scientific research and co-operation to develop international capabilities for assessment, prediction and mitigation. Cullen J (ed) Asian Natural Environmental Science Center, The University of Tokyo, 43 ppGoogle Scholar
  35. GEOHAB (2001) Global ecology and oceanography of harmful algal blooms, science plan. Glibert P, Pitcher G (eds) SCOR and IOC, Baltimore and Paris, 86 ppGoogle Scholar
  36. Glasgow HB, Burkholder JAM, Mallin MA, Deamer-Melia NJ, Reed RE (2001) Field ecology of toxic pfiesteria complex species and a conservative analysis of their role in estuarine fish kills. Environ Health Perspect 109(s5):715–730CrossRefPubMedPubMedCentralGoogle Scholar
  37. Glibert PM, Allen JI, Artioli Y et al (2014) Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis. Glob Chang Biol 20:3845–3858CrossRefPubMedGoogle Scholar
  38. Glibert PM, Allen JI, Bouwman L et al (2010) Modeling of HABs and eutrophication: status, advances, challenges. J Mar Syst 83:262–275CrossRefGoogle Scholar
  39. Glibert PM, Al-Azri A, Allen JI et al (2018a) Key questions and recent research advances on harmful algal blooms in relation to nutrients and eutrophication. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 229–259Google Scholar
  40. Glibert PM, Beusen AHW, Harrison JA et al (2018b) Changing land, sea- and airscapes: sources of nutrient pollution affecting habitat suitability for harmful algae. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 53–76Google Scholar
  41. Glibert PM, Heil CA, Wilkerson F et al (2018c) Nutrients and HABs: dynamic kinetics and flexible nutrition. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 93–112Google Scholar
  42. Glibert PM, Burkholder JM, Kana TM et al (2009) Grazing by Karenia brevis on Synechococcus enhances their growth rate and may help to sustain blooms. Aquat Microb Ecol 55:17–30CrossRefGoogle Scholar
  43. Glibert PM, Burkholder JM, Kana TM (2012) Recent advances in understanding of relationships between nutrient availability, forms and stoichiometry and the biogeographical distribution, ecophysiology, and food web effects of pelagic and benthic Prorocentrum spp. Harmful Algae 14:231–259CrossRefGoogle Scholar
  44. Glibert PM, Kana TM, Brown K (2013) From limitation to excess: consequences of substrate excess and stoichiometry for phytoplankton physiology, trophodynamics and biogeochemistry, and implications for modeling. J Mar Syst 125:14–28CrossRefGoogle Scholar
  45. Glibert PM, Legrand C (2006) The diverse nutrient strategies of HABs: focus on osmotrophy. In: Granéli E, Turner J (eds) Ecology of harmful algae. Springer, New York, NY, pp 163–176CrossRefGoogle Scholar
  46. Goes JI, Gomes HR, Al-Hashimi K et al (2018) Ecological drivers of green Noctiluca blooms in two monsoonally driven ecosystems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 327–336Google Scholar
  47. Goldman JC, Glibert PM (1983) Kinetics of inorganic nitrogen uptake. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic Press, New York, NY, pp 233–274CrossRefGoogle Scholar
  48. Gomes H, Goes JI, Matondkar SGP et al (2014) Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia. Nat Commun 5:4862.  https://doi.org/10.1013/ncomms5862CrossRefGoogle Scholar
  49. Graham LE, Graham JM, Wilcox LW et al (2016) Algae, 3rd edn. LJLM Press, LLC, Madison, WIGoogle Scholar
  50. Granéli E, Carlsson P (1998) The ecological significance of phagotrophy in photo- synthetic flagellates. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms, NATO ASI series, vol G41. Springer, Berlin, Heidelberg, pp 539–557Google Scholar
  51. Hansen PJ (2011) The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates. J Eukaryot Microbiol 58:203–214CrossRefPubMedGoogle Scholar
  52. Hansen PJ, Nielsen LT, Johnson M et al (2013) Acquired phototrophy in Mesodinium and Dinophysis – a review of cellular organization, prey selectivity, nutrient uptake and bioenergetics. Harmful Algae 28:126–139CrossRefGoogle Scholar
  53. Henrikson JC, Gharfeh MS, Easton AC et al (2010) Reassessing the ichthyotoxin profile of cultured Prymnesium parvum (golden algae) and comparing it to samples collected from recent freshwater bloom and fish kill events in North America. Toxicon 55:1396–1404CrossRefPubMedGoogle Scholar
  54. Irigoien X, Flynn KJ, Harris RP (2005) Phytoplankton blooms: a ‘loophole’ in microzooplankton grazing impact? J Plankton Res 27:313–321CrossRefGoogle Scholar
  55. Jeong HJ, Park JY, Nho JH et al (2005) Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquat Microb Ecol 41:1331–1343CrossRefGoogle Scholar
  56. Jeong HJ, Yoo YD, Kim JS et al (2004) Mixotrophy in the phototrophic harmful alga Cochlodinium polykrikoides (Dinophyceae): prey species, the effects of prey concentration, and grazing impact. J Eukaryot Microbiol 51:563–569CrossRefPubMedGoogle Scholar
  57. Jeong HJ, Yoo YD, Kim JS et al (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45:65–91CrossRefGoogle Scholar
  58. Johnson MD (2014) Inducible mixotrophy in the dinoflagellate Prorocentrum minimum. J Eukaryot Microbiol 64:431–434.  https://doi.org/10.1111/jeu.12198CrossRefGoogle Scholar
  59. Jones R (1994) Mixotrophy in planktonic protists as a spectrum of nutritional strategies. Mar Microb Food Webs 8:87–96Google Scholar
  60. Kana TM, Glibert PM (2016) On saturating response curves from the dual perspectives of photosynthesis and nitrogen acquisition. In: Glibert PM, Kana TM (eds) Aquatic microbial ecology and biogeochemistry: a dual perspective. Springer International Publishing, Geneva, pp 93–104CrossRefGoogle Scholar
  61. Katechakis A, Haseneder T, Kling R et al (2005) Mixotrophic versus photoautotrophic specialist algae as food for zooplankton: the light:nutrient hypothesis might not hold for mixotrophs. Limnol Oceanogr 50:1290–1299CrossRefGoogle Scholar
  62. Klausmeier CA, Litchman E, Daufresne T et al (2004) Optimal N:P stoichiometry of phytoplankton. Nature 429:171–174CrossRefPubMedGoogle Scholar
  63. Kudela RM, Raine R, Pitcher G et al (2018) Establishment, goals, and the legacy of the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) Program. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 27–49Google Scholar
  64. Larsen A, Eikrem W, Paasche E (1993) Growth and toxicity in Prymnesium patelliferum (Prymnesiophyceae) isolated from Norwegian waters. Can J Bot 71:1357–1362CrossRefGoogle Scholar
  65. Le Quéré C, Harrison SP, Prentice IC et al (2005) Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob Chang Biol 11:2016–2040Google Scholar
  66. Leles SG, Mitra A, Flynn KJ et al (2017) Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance. Proc R Soc B.  https://doi.org/10.1098/rspb.2017.0664
  67. Lewitus AJ, Glasgow HB, Burkholder JAM (1999) Kleptoplastidy in the Toxic Dinoflagellate Pfiesteria Piscicida (Dinophyceae). J Phycol 35(2):303–312CrossRefGoogle Scholar
  68. Li A, Stoecker DK, Coats DW (2000) Mixotrophy in Gyrodinium galatheanum (Dinophyceae): grazing responses to light intensity and inorganic nutrients. J Phycol 36:33–45CrossRefGoogle Scholar
  69. Lin C-H, Accoroni S, Glibert PM (2017) Mixotrophy in the dinoflagellate Karlodinium veneficum under variable nitrogen:phosphorus stoichiometry: feeding response and effects on larvae of the eastern oyster (Crassostrea virginica). Aquat Microb Ecol 79:101–114.  https://doi.org/10.3354/ameo01823.CrossRefGoogle Scholar
  70. Lom J, Rohde K, Dykov’ I (1993) Crepidoodinium australe n. sp., an ectocommensal dinoflagellate from the gills of Sillago ciliata, an estuarine fish from the New South Wales coast of Australia. Dis Aquat Organ 15:63–72CrossRefGoogle Scholar
  71. Lundgren V, Glibert PM, Granéli E et al (2016) Metabolic and physiological changes in Prymnesium parvum when grown under, and grazing on, prey of variable nitrogen:phosphorus stoichiometry. Harmful Algae 55:1–12CrossRefPubMedGoogle Scholar
  72. McCarthy JJ, Goldman JC (1979) Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters. Science 203:670–672CrossRefPubMedGoogle Scholar
  73. McGillicudy DJ Jr, de Young B, Doney S et al (2010) Models: tools for synthesis in international oceanographic research programs. Oceanography 23:126–139CrossRefGoogle Scholar
  74. Minnhagen SM, Kim M, Salomon P et al (2011) Active uptake of kleptoplastids by Dinophysis caudata from its ciliate prey Myrionecta rubra. Aquat Microb Ecol 62:99–108CrossRefGoogle Scholar
  75. Mitra A, Flynn KJ (2005) Predator-prey interactions: is “ecological stoichiometry” sufficient when good food goes bad? J Plankton Res 27:393–399CrossRefGoogle Scholar
  76. Mitra A, Flynn KJ (2006) Accounting for variation in prey selectivity by zooplankton. Ecol Model 199:82–92CrossRefGoogle Scholar
  77. Mitra A, Flynn KJ (2010) Modelling mixotrophy in harmful algal blooms: more or less the sum of the parts? J Mar Syst 83:158–169CrossRefGoogle Scholar
  78. Mitra A, Castellani C, Gentleman WC et al (2014a) Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link. Prog Oceanogr 129:176–199CrossRefGoogle Scholar
  79. Mitra A, Flynn KJ, Burkholder JM et al (2014b) The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11:995–1005CrossRefGoogle Scholar
  80. Mitra A, Flynn KJ, Tillmann U et al (2016) Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition; incorporation of diverse mixotrophic strategies. Protist 167:106–120CrossRefPubMedGoogle Scholar
  81. Moore JK, Doney SC, Lindsay K (2004) Upper ocean ecosystem dynamics and iron cycling in a global 3-D model. Global Biogeochem Cycles 18:GB4028.  https://doi.org/10.1029/2004GB002220CrossRefGoogle Scholar
  82. Odum EP (1969) The strategy of ecosystem development. Science 164:262–270CrossRefPubMedGoogle Scholar
  83. Parry GD (1981) The meaning of r- and K-selection. Oecologia 48:260–264CrossRefPubMedGoogle Scholar
  84. Pasternak AF, Arashkevich YG, Sorokin YS (1984) The role of the parasitic algal genus Blastodinium in the ecology of planktonic copepods. Oceanology 24:748–751Google Scholar
  85. Pintner IJ, Provasoli L (1968) Heterotrophy in subdued light of 3 Chrysochromulina species. Bull Misaki Mar Biol Inst Kyoto Univ 12:25–31Google Scholar
  86. Plagányi EE (2007) Models for an ecosystem approach to fisheries. Food and Agriculture Organization of the United Nations (FAO) Fisheries Technical Paper, No. 477. FAO, RomeGoogle Scholar
  87. Polimene L, Mitra A, Sailley SF et al (2015) Decrease in diatom palatability contributes to bloom formation in the Western English Channel. Prog Oceanogr 137B:484–497.  https://doi.org/10.1016/j.pocean.2015.04.026CrossRefGoogle Scholar
  88. Putt M (1990) Metabolism of photosynthate in the chloroplast-retaining ciliate Laboea strobila. Mar Ecol Prog Ser 60:271–282CrossRefGoogle Scholar
  89. Ramin M, Perhar G, Shimoda Y et al (2012) Examination of the effects of nutrient regeneration mechanisms on plankton dynamics using aquatic biogeochemical modeling. Ecol Model 240:139–155CrossRefGoogle Scholar
  90. Raven JA, Beardall J, Flynn KJ et al (2009) Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin’s insectivorous plants. J Exp Bot 60:3975–3987CrossRefPubMedGoogle Scholar
  91. Remmel EJ, Hambright KD (2012) Toxin-assisted micropredation: experimental evidence shows that contact micropredation rather than exotoxicity is the role of Prymnesium toxins. Ecol Lett 15:126–132CrossRefPubMedGoogle Scholar
  92. Rokitta SD, de Nooijer LJ, Trimborn S, de Vargas C, Rost B, John U (2011) Transcriptional analyses reveal differential gene expression patterns between the life cycle stages of Emiliania huxleyi (Haptophyta) and reflects specialization to different ecological niches. J Phycol 47:829–838CrossRefPubMedGoogle Scholar
  93. Rose KA, Allen JI, Artioli Y et al (2010) End-to-end models for the analysis of marine ecosystems: challenges, issues, and next steps. Mar Coast Fish 2:115–130CrossRefGoogle Scholar
  94. Smalley GW, Coats DW (2002) Ecology of the red-tide dinoflagellate Ceratium furca: distribution, mixotrophy, and grazing impact on ciliate populations of Chesapeake Bay. J Eukaryot Microbiol 49:64–74CrossRefGoogle Scholar
  95. Smayda TJ (1997) Harmful algal blooms: their ecophysiological and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42:1137–1153CrossRefGoogle Scholar
  96. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, NJGoogle Scholar
  97. Stoecker DK, Hansen PJ, Caron DA et al (2017) Mixotrophy in the marine plankton. Ann Rev Mar Sci 9:311–335CrossRefPubMedGoogle Scholar
  98. Stoecker DK, Michaels AE (1991) Respiration, photosynthesis and carbon metabolism in planktonic ciliates. Mar Biol 108:441–447CrossRefGoogle Scholar
  99. Stukel MR, Landry MR, Selph KE (2011) Nanoplankton mixotrophy in the eastern equatorial Pacific. Deep Sea Res Part II 58:378–386CrossRefGoogle Scholar
  100. Thingstad TF, Havskum H, Zweifel UL et al (2007) Ability of a ‘minimum’ microbial food web model to reproduce response patterns observed in mesocosms manipulated with N and P, glucose, and Si. J Mar Syst 64:15–34CrossRefGoogle Scholar
  101. Unrein F, Massana R, Alonso-Saez L et al (2007) Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnol Oceanogr 52:456–469CrossRefGoogle Scholar
  102. Van Wagoner RM, Deeds JR, Tatters AO et al (2010) Structure and relative potency of several karlotoxins from Karlodinium veneficum. J Nat Prod 73:1360–1365CrossRefPubMedPubMedCentralGoogle Scholar
  103. Ward BA, Dutkiewicz S, Barton AD et al (2011) Biophysical aspects of resource acquisition and competition in algal mixotrophs. Am Nat 178:98–112CrossRefPubMedGoogle Scholar
  104. Wells ML, Karlson B (2018) Harmful algal blooms in a changing ocean. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 77–90Google Scholar
  105. Zubkov MV, Tarran GA (2008) High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature 455:224–226CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kevin J. Flynn
    • 1
  • Aditee Mitra
    • 1
  • Patricia M. Glibert
    • 2
  • JoAnn M. Burkholder
    • 3
  1. 1.Wallace Building, Swansea UniversitySwanseaUK
  2. 2.University of Maryland Center for Environmental Science, Horn Point LaboratoryCambridgeUSA
  3. 3.Center for Applied Aquatic EcologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations