Advertisement

Changing Land-, Sea-, and Airscapes: Sources of Nutrient Pollution Affecting Habitat Suitability for Harmful Algae

  • Patricia M. Glibert
  • Arthur H. W. Beusen
  • John A. Harrison
  • Hans H. Dürr
  • Alexander F. Bouwman
  • Goulven G. Laruelle
Part of the Ecological Studies book series (ECOLSTUD, volume 232)

Abstract

Globally, nutrient loading to surface waters is large and increasing, with sources from land-based pollution to aquaculture and atmospheric deposition. Spatial differences in amounts and forms of nutrients released to receiving waters are large, with Asia, Western Europe, and North America exporting the highest loads of nutrients, especially of inorganic nitrogen (N). Export of N is increasing more rapidly than that of phosphorus (P) on a global basis, leading to stoichiometrically imbalanced nutrient conditions. Under such conditions, some types of harmful algal blooms (HABs) can thrive. Differences in coastal typology affect the retentive nature of different coastal types, while dam and reservoir constructions have further altered riverine flows and differentially retain different nutrients. A coastal eutrophication index comparing information on the changes in N and P relative to silicon (Si) and modeling projections of future outcomes using several modeling approaches show that the likelihood for increased nutrient pollution and, correspondingly, for continued regional and global expansion of HABs is great.

Notes

Acknowledgments

This effort is a contribution of SCOR Working Group 132 on Land-Based Nutrient Pollution and Harmful Algal Blooms and is also contribution number 5404 from the University of Maryland Center for Environmental Science. This work received support from the Global Environment Fund, UNEP, and UNESCO-IOC funding to A. Bouwman, A. Beusen, and J. Harrison, as well as USDA Water Sustainability and Climate, USDA Earth Systems Modeling, and NSF INFEWS funding to Harrison. Laruelle is Chargé de recherches du F.R.S.-FNRS at the Université Libre de Bruxelles. Dürr received funding from the Canada Excellence Research Chair in Ecohydrology.

References

  1. Alcamo J, Van Vuuren D, Cramer W (2006) Changes in ecosystem services and their drivers across the scenarios. In: Carpenter SR, Pingali PL, Bennett EM et al (eds) Ecosystems and human well-being: scenarios. Island Press, Washington, DC, pp 297–373Google Scholar
  2. Alonso-Rodríguez R, Páez-Osuna F (2003) Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture 219:317–336CrossRefGoogle Scholar
  3. Anderson DM (2014) HABs in a changing world: a perspective on harmful algal blooms, their impacts, and research and management in a dynamic era of climatic and environmental change. In: Kim H-G, Reguera B, Hallegraeff GM et al (eds) Harmful algae 2012: Proceedings of the 15th International conference on harmful algae: October 29–November 2, 2012, CECO, Changwon, Gyeongnam, pp 3–17Google Scholar
  4. Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726CrossRefGoogle Scholar
  5. Arndt S, Regnier P, Vanderborght JP (2009) Seasonally-resolved nutrient export fluxes and filtering capacities in a macrotidal estuary. J Mar Syst 78:42–58CrossRefGoogle Scholar
  6. Berdalet E, Kudela R, Banas NS et al (2018) GlobalHAB: fostering international coordination on harmful algal bloom research in aquatic systems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp. 425–447CrossRefGoogle Scholar
  7. Berg GM, Balode M, Purina I et al (2003) Plankton community composition in relation to availability and uptake of oxidized and reduced nitrogen. Aquat Microb Ecol 30:263–274CrossRefGoogle Scholar
  8. Bernard CY, Dürr HH, Heinze C et al (2011) Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean – a model study. Biogeosciences 8:551–564CrossRefGoogle Scholar
  9. Bernard CY, Laruelle GG, Slomp CP et al (2010) Impact of changes in river nutrient fluxes on the global marine silicon cycle: a model comparison. Biogeosciences 7:441–453CrossRefGoogle Scholar
  10. Beusen AHW, Deckers ALM, Bouwman AF et al (2005) Estimation of global river transport of sediments and associated particulate C, N and P. Global Biogeochem Cycles 19:1–17CrossRefGoogle Scholar
  11. Beusen AHW, Slomp CP, Bouwman AF (2013) Global land-ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge. Environ Res Lett 8:034035CrossRefGoogle Scholar
  12. Beusen AHW, Bouwman AF, Dürr HH et al (2009) Global patterns of dissolved silica export to the coastal zone: results from a spatially explicit global model. Global Biogeochem Cycles 23:GB0A02.  https://doi.org/10.1029/2008GB003281 CrossRefGoogle Scholar
  13. Beusen AHW, Bouwman AF, Van Beek LPH et al (2016) Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13:2441–2451CrossRefGoogle Scholar
  14. Beusen AHW, Van Beek LPH, Bouwman AF et al (2015) Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water – description of IMAGE–GNM and analysis of performance. Geosci Model Dev 8:4045–4067.  https://doi.org/10.5194/gmd-8-4045-2015 CrossRefGoogle Scholar
  15. Billen G, Garnier J (2007) River basin nutrient delivery to the coastal sea: assessing its potential to sustain new production of non-siliceous algae. Mar Chem 106:148–160. doi:10.1016.j.marchem.2006.1012.1017Google Scholar
  16. Billen G, Garnier J, Deligne C et al (1999) Estimates of early-industrial inputs of nutrients to river systems: implication for coastal eutrophication. Sci Total Environ 243/244:43–52CrossRefGoogle Scholar
  17. Bouwman AF, Beusen AHW, Billen G (2009) Human alteration of the global nitrogen and phosphorus soil balances for the period 1970-2050. Global Biogeochem Cycles 23.  https://doi.org/10.1029/2009GB003576
  18. Bouwman AF, Beusen AHW, Glibert PM et al (2013a) Mariculture: significant and expanding cause of coastal nutrient enrichment. Environ Res Lett 8:044026.  https://doi.org/10.1088/1748-9326/8/4/044026 CrossRefGoogle Scholar
  19. Bouwman AF, Beusen AHW, Lassaletta L et al (2017) Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci Rep.  https://doi.org/10.1038/srep40366
  20. Bouwman AF, Beusen AHW, Overbeek CC et al (2013b) Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Rev Fish Sci 21:112–156.  https://doi.org/10.1080/10641262.2013.790340 CrossRefGoogle Scholar
  21. Bouwman AF, Pawłowski M, Liu C et al (2011) Global hindcasts and future projections of coastal nitrogen and phosphorus loads due to shellfish and seaweed aquaculture. Rev Fish Sci 19:331–357.  https://doi.org/10.1080/10641262.2011.603849 CrossRefGoogle Scholar
  22. Boyd PW, Doney SC (2003) The impact of climate change and feedback processes on the ocean carbon cycle. In: Fasham MJR (ed) Ocean biogeochemistry – the role of the ocean carbon cycle in global change. Springer, Berlin, pp 157–193Google Scholar
  23. Boyer EW, Howarth RW, Galloway JN et al (2006) Riverine nitrogen export from the continents to the coasts. Global Biogeochem Cycles 20:GB1S91.  https://doi.org/10.1029/2005GB002537 CrossRefGoogle Scholar
  24. Constant KM, Sheldrick, WF (1992) World nitrogen survey. World Bank Technical paper 174, Washington, DCGoogle Scholar
  25. Cork S, Peterson G, Petschel-Held G (2005) Four scenarios. In: Carpenter SR, Pingali PL, Bennett EM et al (eds) Ecosystems and human well-being: scenarios, findings of the scenario working group, Millennium Ecosystem Assessment. Island Press, Washington DC, pp 223–294Google Scholar
  26. Doney SC (2010) The growing human footprint on coastal and open ocean biogeochemistry. Science 328:1512–1516CrossRefPubMedGoogle Scholar
  27. Duce RA, LaRoche J, Altieri K et al (2008) Impacts of atmospheric nitrogen on the open ocean. Science 320:893–897CrossRefPubMedGoogle Scholar
  28. Dumont E, Harrison JA, Kroeze C et al (2005) Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: results from a spatially explicit, global model. Global Biogeochem Cycles 19:GB4S02CrossRefGoogle Scholar
  29. Dürr HH, Laruelle GG, Van Kempen C et al (2011) World-wide typology of near-shore coastal systems: defining the estuarine filter of river inputs to the ocean. Estuar Coasts 34:441–458.  https://doi.org/10.1007/s12237-12011-19381-y CrossRefGoogle Scholar
  30. Ellis L (2008) A China environmental health project research brief: environmental health and China’s concentrated animal feeding operations (CAFOs). https://www.wilsoncenter.org/sites/default/files/factory_farms_feb28.pdf
  31. FAO (2012a) Cultured aquatic species. FAO, Rome. http://fao.stat.fao.org Google Scholar
  32. FAO (2012b) FAOSTAT database collections. FAO, Rome. http://faostat.fao.org Google Scholar
  33. FAO (2016) Total fishery production 1950–2014. FishStatJ – Universal software for fishery statistical time series, Rome. http://www.fao.org/fishery/statistics/software/fishstatj/en Google Scholar
  34. Flynn KJ, Stoecker DK, Mitra A et al (2013) Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J Plankton Res 35:3–11CrossRefGoogle Scholar
  35. Fowler D, Coyle M, Skiba U et al (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc B 368(1621):20130164.  https://doi.org/10.1098/rstb.2013.0164 CrossRefGoogle Scholar
  36. Fu M, Wang Z, Pu X et al (2012) Changes in nutrient concentrations and N:P:Si ratios and their possible impacts on the Huanghai Sea ecosystem. Acta Oceanol Sinica 31:101–112CrossRefGoogle Scholar
  37. Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71CrossRefPubMedGoogle Scholar
  38. Galloway JN, Cowling EB, Seitzinger SP et al (2002) Reactive nitrogen: too much of a good thing? Ambio 31:60–63CrossRefPubMedGoogle Scholar
  39. Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science 320:889–892CrossRefPubMedGoogle Scholar
  40. Galloway JN, Winiwarter W, Leip A et al (2014) Nitrogen footprints: past, present and future. Environ Res Lett 9:115003 (11 p).  https://doi.org/10.1088/1748-9326/9/11/115003 CrossRefGoogle Scholar
  41. Garnier J, Beusen AHW, Thieu V et al (2010) N:P:Si nutrient export ratios and ecological consequences in coastal seas evaluated by the ICEP approach. Global Biogeochem Cycles 24:GB0A05.  https://doi.org/10.1029/2009GB003583 CrossRefGoogle Scholar
  42. GEOHAB (1998) Global ecology and oceanography of harmful algal blooms: a plan for co-ordinated scientific research and co-operation to develop international capabilities for assessment, prediction and mitigation. Cullen J (ed) Asian Natural Environmental Science Center, The University of Tokyo. 43 ppGoogle Scholar
  43. GEOHAB (2010) GEOHAB Asia, global ecology and oceanography of harmful algal blooms in Asia: a regional comparative programme. Furuya K, Glibert PM, Zhou M et al (eds) IOC and SCOR, Baltimore and Paris, 69 ppGoogle Scholar
  44. Glibert PM (2017) Eutrophication, harmful algae and biodiversity – challenging paradigms in a world of complex nutrient changes. Mar Pollut Bull 124:591–606.  https://doi.org/10.1016/j.marpolbul.2017.04.027 CrossRefPubMedGoogle Scholar
  45. Glibert PM, Allen JI, Artioli Y et al (2014a) Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis. Glob Chang Biol 20:3845–3858.  https://doi.org/10.1111/gcb.12662 CrossRefPubMedGoogle Scholar
  46. Glibert PM, Al-Azri A, Allen JI et al (2018) Key questions and recent research advances on harmful algal blooms in relation to nutrients and eutrophication. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 229–259CrossRefGoogle Scholar
  47. Glibert PM, Burford MA (2017) Globally changing nutrient loads and harmful algal blooms: recent advances, new paradigms, and continuing challenges. Oceanography 30(1):58–69.  https://doi.org/10.5670/oceanog.2017.110 CrossRefGoogle Scholar
  48. Glibert PM, Garside C, Fuhrman J et al (1991) Time- and size-dependent coupling of organic and inorganic nitrogen uptake and NH4 + regeneration in the plume of the Chesapeake Bay, and its regulation by large heterotrophs. Limnol Oceanogr 36:895–909CrossRefGoogle Scholar
  49. Glibert PM, Harrison JA, Heil CA et al (2006) Escalating worldwide use of urea – a global change contributing to coastal eutrophication. Biogeochemistry 77:441–463CrossRefGoogle Scholar
  50. Glibert PM, Manager R, Sobota DJ et al (2014b) The Haber-Bosch–harmful algal bloom (HB-HAB) link. Environ Res Lett 9:105001 (13 p).  https://doi.org/10.1088/1748-9326/9/10/105001 CrossRefGoogle Scholar
  51. Glibert PM, Mayorga E, Seitzinger S (2008) Prorocentrum minimum tracks anthropogenic nitrogen and phosphorus inputs on a global basis: application of spatially explicit nutrient export models. Harmful Algae 8:33–38CrossRefGoogle Scholar
  52. Glibert PM, Seitzinger S, Heil CA et al (2005) The role of eutrophication in the global proliferation of harmful algal blooms: new perspectives and new approaches. Oceanography 18:198–209CrossRefGoogle Scholar
  53. Glibert PM, Wilkerson FP, Dugdale RC et al (2016) Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol Oceanogr 61:165–197CrossRefGoogle Scholar
  54. Grill G, Lehner B, Lumsdon AE et al (2015) An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ Res Lett 10:015001CrossRefGoogle Scholar
  55. Harrison JA, Bouwman AF, Mayorga E et al (2010) Magnitudes and sources of dissolved inorganic phosphorus inputs to surface fresh waters and the coastal zone: a new global model. Global Biogeochem Cycles 24:GB1003.  https://doi.org/10.1029/2009GB003590 CrossRefGoogle Scholar
  56. Harrison JA, Caraco NF, Seitzinger SP (2005a) Global patterns and sources of dissolved organic matter export to the coastal zone: results from a spatially explicit, global model. Global Biogeochem Cycles 19:GB4S04Google Scholar
  57. Harrison JA, Frings P, Beusen AHW, Conley DJ, McCrackin ML (2012) Global importance, patterns, and controls of dissolved silica retention in lakes and reservoirs. Glob Biogeochem Cycles.  https://doi.org/10.1029/2011GB004228
  58. Harrison JA, Seitzinger SP, Caraco N et al (2005b) Dissolved inorganic phosphorous export to the coastal zone: results from a new, spatially explicit, global model (NEWS-SRP). Global Biogeochem Cycles 19:GB4S03Google Scholar
  59. Harrison WG, Head EJH, Conover RJ et al (1985) The distribution and metabolism of urea in the eastern Canadian Arctic. Deep Sea Res 32:23–42CrossRefGoogle Scholar
  60. Heffer P, Prud’homme M (2013) Fertilizer outlook 2013-2017. In: 81st IFA annual conference, Chicago, USA, 20–22 May, 2013. www.fertilizer.org. Accessed 22 Jun 2014
  61. Heinze C, Maier-Reimer E, Winguth AME et al (1999) A global oceanic sediment model for long-term climate studies. Global Biogeochem Cycles 13:221–250CrossRefGoogle Scholar
  62. Heisler J, Glibert PM, Burkholder JM et al (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13CrossRefPubMedPubMedCentralGoogle Scholar
  63. Hickey BM, Banas NS (2003) Oceanography of the US Pacific northwest coastal ocean and estuaries with application to coastal ecology. Estuaries 26:1010–1031CrossRefGoogle Scholar
  64. Holt JT, Harle J, Proctor R et al (2009) Modelling the global coastal ocean. Phil Trans Roy Soc A: Math, Phys, Eng Sci 367:939–951CrossRefGoogle Scholar
  65. Honkanen T, Helminen H (2000) Impacts of fish farming on eutrophication: comparisons among different characteristics of ecosystem. Int Rev Hydrobiol 85:673–686CrossRefGoogle Scholar
  66. Houlton BZ, Boyer E, Finzi A et al (2013) Intentional versus unintentional nitrogen use in the United States: trends, efficiency and implications. Biogeochemistry 114:11–23CrossRefGoogle Scholar
  67. Howarth RW (2006) Atmospheric deposition and nitrogen pollution in coastal marine ecosystems. In: Visgilio G, Whitelaw DM (eds) Acid in the environment: lessons learned and future pro spects. Springer, New York, NY, pp 97–116Google Scholar
  68. Howarth RW (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8:14–20CrossRefGoogle Scholar
  69. International Fertilizer Association (IFA) (2014) IFA database. www.fertilizer.org/ifa/Home-Page/STATISTICS
  70. International Food Policy Research Institute (IFPRI) (2003) Outlook for fish to 2020, meeting global demand. WorldFish Center, Penang, Malaysia, p 28Google Scholar
  71. Jaworski NA, Howarth RW, Hetling LJ (1997) Atmospheric deposition of nitrogen oxides onto the landscape contributes to coastal eutrophication in the northeast United States. Environ Sci Technol 31:1995–2004CrossRefGoogle Scholar
  72. Jia Y, Yu G, Gao Y et al (2016) Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements. Sci Rep 6:19810.  https://doi.org/10.1038/srep19810 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kanakidou M, Myriokefalitakis S, Daskalakis N et al (2016) Past, present, and future atmospheric nitrogen deposition. Am Meterol Soc J.  https://doi.org/10.1175/JAS-D-15-0278.1
  74. Kaufman ZG, Lively JS, Carpenter EJ (1983) Uptake of nitrogenous nutrients by phytoplankton in a barrier island estuary: Great South Bay, New York. Estuar Coast Shelf Sci 17:483–493CrossRefGoogle Scholar
  75. Kaushik SJ, Cowey CB (1991) Dietary factors affecting nitrogen excretion by fish. In: Cowey CB, Cho CY (eds) Nutritional strategies and aquaculture waste. Proceedings of 1st international symposium on nutritional strategies in management of aquaculture waste. University of Guelph, Ontario, pp 3–19Google Scholar
  76. Kudela RM, Cochlan WP (2000) Nitrogen and carbon uptake kinetics and the influence of irradiance for a red tide bloom off southern California. Aquat Microb Ecol 21:31–47CrossRefGoogle Scholar
  77. Laruelle GG (2009) Quantifying nutrient cycling and retention in coastal waster at the global scale. PhD dissertation, Geologica Ultraiectina. Mededelingen van de Faculteit Geowetenschappen Universiteit Utrecht No. 312, Utrecht University, Utrecht, p 226Google Scholar
  78. Laruelle GG, Goossens N, Arndt S et al (2017) Air–water CO2 evasion from US East Coast estu aries. Biogeosciences 14:2441–2468.  https://doi.org/10.5194/bg-14-2441-2017 CrossRefGoogle Scholar
  79. Lehner B, Liermann CR, Revenga C et al (2011) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9:494–502CrossRefGoogle Scholar
  80. Li J, Glibert PM, Zhou M et al (2009) Relationships between nitrogen and phosphorus forms and ratios and the development of dinoflagellate blooms in the East China Sea. Mar Ecol Prog Ser 383:11–26CrossRefGoogle Scholar
  81. Liermann CR, Nilsson C, Robertson J et al (2012) Implications of dam obstruction for global freshwater fish diversity. Bioscience 62:539–548CrossRefGoogle Scholar
  82. Maavara T (2017) Perturbations to nutrient and carbon cycles by river damming. PhD thesis, University of Waterloo, p 174Google Scholar
  83. Maavara T, Dürr HH, Van Cappellen P (2014) Worldwide retention of nutrient silicon by river damming: from sparse data set to global estimate. Global Biogeochem Cycles 28:842–855CrossRefGoogle Scholar
  84. Maavara T, Parsons CT, Ridenour C et al (2015) Global phosphorus retention by river damming. Proc Natl Acad Sci USA 112:15603–15608PubMedPubMedCentralGoogle Scholar
  85. Mallin MA, McIver MR, Robuck AR et al (2015) Industrial swine and poultry production causes chronic nutrient and fecal microbial stream pollution. Water Air Soil Pollut 226:407.  https://doi.org/10.1007/s11270-015-2669-y CrossRefGoogle Scholar
  86. McKee BA, Aller RC, Allison M et al (2004) Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes. Cont Shelf Res 24:899–926CrossRefGoogle Scholar
  87. Moore SK, Trainer VL, Mantua NJ et al (2008) Impacts of climate variability and future change on harmful algal blooms and human health. Environ Health 7:S4.  https://doi.org/10.1186/1476-069X-7-S2-S4 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Nixon SW, Ammerman JW, Atkinson LP et al (1996) The fate of nitrogen and phosphorus at the land–sea margin of the North Atlantic Ocean. Biogeochemistry 3:141–180CrossRefGoogle Scholar
  89. Pitcher GC, Figueiras FG, Hickey BM et al (2010) The physical oceanography of upwelling systems and the development of harmful algal blooms. Prog Oceanogr 85:5–32CrossRefPubMedPubMedCentralGoogle Scholar
  90. Regnier P, Arndt S, Goossens N et al (2013) Modelling estuarine biogeochemical dynamics: from the local to the global scale. Aquat Geochem 19:591–626CrossRefGoogle Scholar
  91. Rodellas V, Garcia-Orellana J, Masqué P et al (2015) Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proc Natl Acad Sci USA 112(13):3926–3930CrossRefPubMedGoogle Scholar
  92. Seitzinger SP, Harrison JA, Dumont E et al (2005) Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Global Biogeochem Cycles 19:GB4S01.  https://doi.org/10.1029/2005gb002606 CrossRefGoogle Scholar
  93. Seitzinger SP, Mayorga E, Bouwman AF et al (2010) Global river nutrient export: a scenario ana lysis of past and future trends. Global Biogeochem Cycles 24:GB0A08.  https://doi.org/10.1029/2009GB003587 CrossRefGoogle Scholar
  94. Sharples J, Middelburg JJ, Fennel K, Jickells TD (2017) What proportion of riverine nutrients reaches the open ocean? Global Biogeochem Cycles 31:39–58.  https://doi.org/10.1002/2016GB005483 CrossRefGoogle Scholar
  95. Sinha E, Michalak AM, Balaji V (2017) Eutrophication will increase during the 21st century as a result of prcipitaiton changes. Science 357:405–408CrossRefPubMedGoogle Scholar
  96. Smil V (2001) Enriching the Earth: Fritz Haber, Carl Bosch, and the transformation of world food. The MIT Press, Cambridge, MA, p 338Google Scholar
  97. Solomon S, Qin D, Manning M et al (eds) (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge and New York, NYGoogle Scholar
  98. Sutton MA, Bleeker A, Howard CM et al (2013) Our nutrient world: the challenge to produce more food and energy with less pollution. Centre for Ecology and Hydrology, EdinburghGoogle Scholar
  99. Switzer T (2008) Urea loading from a spring storm – Knysna estuary, South Africa. Harmful Algae 8:66–69CrossRefGoogle Scholar
  100. Syvitski JPM, Vörösmarty CJ, Kettner AJ et al (2005) Impacts on the flux of terrestrial sediment to the global ocean. Science 308:376–380CrossRefPubMedGoogle Scholar
  101. Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515:518–522.  https://doi.org/10.1038/nature13959 CrossRefPubMedGoogle Scholar
  102. United Nations, Department of Economic and Social Affairs, Population Division (2014) World urbanization prospects: the 2014 revision, highlights (ST/ESA/SER.A/352). https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.pdf
  103. Verdegen MCJ (2013) Nutrient discharge from aquaculture operations in function of system design and production environment. Rev Aquacult 5:158–171CrossRefGoogle Scholar
  104. Volta C, Arndt S, Savenije HHG et al (2014) C-GEM (v 1.0): a new, cost-efficient biogeochemical model for estuaries and its application to a funnel-shaped system. Geosci Model Dev 7:1271–1295.  https://doi.org/10.5194/gmd-7-1271-2014 CrossRefGoogle Scholar
  105. Volta C, Laruelle GG, Regnier P (2016) Regional carbon and CO2 budgets of North Sea tidal estuaries. Estuar Coast Shelf Sci 176:76–90CrossRefGoogle Scholar
  106. Vörösmarty CJ, Meybeck M, Fekete BE et al (2003) Anthropogenic sediment retention: major global impact from registered river impoundments. Global Planet Change 39:169–190CrossRefGoogle Scholar
  107. Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561CrossRefGoogle Scholar
  108. Wang S, Tang D, He F et al (2008) Occurrences of harmful algal blooms (HABs) associated with ocean environments in the South China Sea. Hydrobiologia 596:79–93CrossRefGoogle Scholar
  109. Wells ML, Karlson B (2018) Harmful algal blooms in a changing ocean. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 77–90CrossRefGoogle Scholar
  110. Wells ML, Trainer VL, Smayda TJ et al (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93CrossRefPubMedPubMedCentralGoogle Scholar
  111. Zarfl C, Lumsdon AE, Berlekamp J et al (2015) A global boom in hydropower dam construction. Aquat Sci 77:161–170CrossRefGoogle Scholar
  112. Zhang J, Wu Y, Zhang YY (2015) Plant nutrients and trace elements from the Changjiang water sheds and East China Sea Shelf. In: Zhang J (ed) Ecological continuum from the Changjiang (Yangtze River) watersheds to the East China Sea continental margin. Springer International Publishing, Switzerland, pp 93–118Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Patricia M. Glibert
    • 1
  • Arthur H. W. Beusen
    • 2
    • 3
  • John A. Harrison
    • 4
  • Hans H. Dürr
    • 5
  • Alexander F. Bouwman
    • 2
    • 3
  • Goulven G. Laruelle
    • 6
    • 7
  1. 1.University of Maryland Center for Environmental Science, Horn Point LaboratoryCambridgeUSA
  2. 2.Faculty of Geosciences, Department of Earth Sciences—GeochemistryUtrecht UniversityUtrechtThe Netherlands
  3. 3.PBL Netherlands Environmental Assessment AgencyThe HagueThe Netherlands
  4. 4.Washington State UniversityVancouverUSA
  5. 5.Ecohydrology Research Group, Department of Earth and Environmental SciencesUniversity of WaterlooWaterlooCanada
  6. 6.Department Geoscience, Environment and Society (DGES)Université Libre de BruxellesBruxellesBelgium
  7. 7.UMR 7619 Metis, Sorbonne Universités, UPMC, Univ Paris 06, CNRS, EPHE, IPSLParisFrance

Personalised recommendations