GlobalHAB: Fostering International Coordination on Harmful Algal Bloom Research in Aquatic Systems
Abstract
GlobalHAB, “Global Harmful Algal Blooms,” is a new scientific programme on harmful algal blooms (HABs) cosponsored by the Intergovernmental Oceanographic Commission (IOC) of UNESCO and the Scientific Committee on Oceanic Research (SCOR) that will operate for 10 years from 2016 to 2025. GlobalHAB builds on the solid foundation established by the former programme GEOHAB and will continue to promote coordinated international scientific activities, which is fundamental to keep progressing on the comprehension of the global complexity of HABs and that will contribute to the management and mitigation of their impacts worldwide. The GlobalHAB Scientific and Implementation Plan is briefly presented in this chapter.
Notes
Acknowledgments
The GlobalHAB Scientific Steering Committee acknowledges the financial support provided by IOC and by SCOR through Grants OCE 12-1243377 and OCE-1546580 from the US National Science Foundation and from ICES, IPHAB, ISSHA, PICES, and the Scottish Association for Marine Science.
References
- Anderson CR, Kudela RM, Kahru M et al (2016) Initial skill assessment of the California Harmful Algae Risk Mapping (C-HARM) system. Harmful Algae 59:1–8CrossRefPubMedGoogle Scholar
- Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:562–584CrossRefGoogle Scholar
- Anderson DM, Keafer BA, Kleindinst JL et al (2014) Alexandrium fundyense cysts in the Gulf of Maine: long-term time series of abundance and distribution, and linkages to past and future blooms. Deep Sea Res II Top Stud Oceanogr 103:6–26CrossRefGoogle Scholar
- Anderson DM, Pitcher GC, Estrada M (2005) The comparative “systems” approach to HAB research. Oceanography 18:148–157CrossRefGoogle Scholar
- Azanza RV, Brosnahan ML, Anderson DM et al (2018) The role of life cycle characteristics in harmful algal bloom dynamics. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 133–161Google Scholar
- Berdalet E, McManus MA, Ross ON et al (2014) Understanding harmful algae in stratified systems: review of progress and future directions. Deep Sea Res II Top Stud Oceanogr 101:4–20CrossRefGoogle Scholar
- Berdalet E, Tester PA, Chinain M et al (2017a) Harmful algal blooms in benthic systems: recent progresses and future research. Oceanography 30:36–45CrossRefGoogle Scholar
- Berdalet E, Montresor M, Reguera B et al (2017b) Harmful algal blooms in fjords and coastal embayments and stratified systems: recent progress and future research. Oceanography 30:46–57CrossRefGoogle Scholar
- Berdalet E, Tester P (2018) Key questions and recent research advances on harmful algal blooms in benthic systems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 261–286CrossRefGoogle Scholar
- Black EA, Whyth JNC, Bagshaw JW et al (1991) The effects of Heterosigma akashiwo on juvenile Oncorhynchus tshawytscha and its implications for fish culture. J Appl Ichthyol 7:168–175CrossRefGoogle Scholar
- Boada LD, Zumbado M, Luzardo OP et al (2010) Ciguatera fish poisoning on the West Africa Coast: an emerging risk in the Canary Islands (Spain). Toxicon 56:1516–1519PubMedPubMedCentralGoogle Scholar
- Borcier AE, Morvezen R, Boudry P et al (2017) Effects of bioactive extracellular compounds and paralytic shellfish toxins produced by Alexandrium minutum on growth and behaviour of juvenile great scallops Pecten maximus. Aquat Toxicol. https://doi.org/10.1016/j.aquatox.2017.01.009CrossRefPubMedGoogle Scholar
- Brosnahan ML, Velo-Suárez L, Ralston DK et al (2015) Rapid growth and concerted sexual transitions by a bloom of the harmful dinoflagellate Alexandrium fundyense (Dinophyceae). Limnol Oceanogr 60:2059–2078CrossRefPubMedPubMedCentralGoogle Scholar
- Burford M, Hamilton DP, Wood SA (2018) Emerging HAB research issues in freshwater environments. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 381–402CrossRefGoogle Scholar
- Burkholder JM, Glibert PM, Skelton H (2008) Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77–93CrossRefGoogle Scholar
- Campbell L, Olson RJ, Sosik HM et al (2010) First harmful Dinophysis (Dinophyceae, Dinophysiales) bloom in the U.S. revealed by automated imaging flow cytometry. J Phycol 46:66–75CrossRefGoogle Scholar
- Chambouvet A, Morin P, Marie D et al (2008) Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322(5905):1254–1257CrossRefPubMedGoogle Scholar
- Clement A, Lincoqueo L, Saldivia M et al (2016) Exceptional summer conditions and HABs of Pseudochattonella in Southern Chile create record impacts on salmon farms. Harmful Algae News 53:1–3CrossRefGoogle Scholar
- Dahl E, Tangen K (1993) 25 years experience with Gyrodinium aureolum in Norwegian waters. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, New York, pp 15–21Google Scholar
- Davidson K, Anderson DM, Mateus M et al (2016) Forecasting the risk of harmful algal blooms. Harmful Algae 53:1–7CrossRefPubMedGoogle Scholar
- Davidson K, Gowen RJ, Harrison PJ (2014) Anthropogenic nutrients and harmful algae in coastal waters. J Environ Manage 146:206–216CrossRefPubMedGoogle Scholar
- Dyson K, Huppert DD (2010) Regional economic impacts of razor clam beach closures due to harmful algal blooms (HABs) on the Pacific coast of Washington. Harmful Algae 9:264–271CrossRefGoogle Scholar
- Flynn KJ, Mitra A, Glibert PM et al (2018) Mixotrophy in HABs: by whom, on whom, when, why, and what next. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 113–132CrossRefGoogle Scholar
- Foloni-Neto H, Lueck R, Mabuchi Y et al (2014) A new quasi-horizontal glider to measure biophysical microstructure. J Atmos Ocean Technol 31:2278–2293. https://doi.org/10.1175/JTECH-D-13-00240.1CrossRefGoogle Scholar
- Franks PJS (2018) Recent advances in modelling of harmful algal blooms. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 359–377CrossRefGoogle Scholar
- Friedman MA, Fernandez M, Backer L et al (2017) An updated review of ciguatera fish poisoning: clinical, epidemiological, environmental, and public health management. Mar Drugs 15(72). https://doi.org/10.3390/md15030072CrossRefPubMedCentralGoogle Scholar
- Fukuyo Y, Imai I, Kodama M et al (2002) Red tides and harmful algal blooms in Japan. In: Taylor FJ, Trainer VL (eds) Harmful algal blooms in the PICES region of the North Pacific. PICES, Scientific Report No. 23. North Pacific Marine Science Organization (PICES), Sidney, BC, pp 7–20Google Scholar
- GEOHAB (2001) Global ecology and oceanography of harmful algal blooms, science plan. Glibert PM, Pitcher G (eds) SCOR and IOC, Baltimore and Paris 87 ppGoogle Scholar
- GEOHAB (2003) Global ecology and oceanography of harmful algal blooms, implementation plan. Gentien P, Pitcher G, Cembella A et al (eds) SCOR and IOC, Baltimore and Paris, 36 ppGoogle Scholar
- GEOHAB (2011) GEOHAB modelling: a workshop report. McGillicuddy DJ Jr, Glibert PM, Berdalet E et al (eds), IOC and SCOR, Paris and Newark, Delaware 85 ppGoogle Scholar
- GEOHAB (2012) Global ecology and oceanography of harmful algal blooms: core research project – harmful algal blooms in benthic systems. Berdalet E, Tester P, Zingone A (eds) IOC of UNESCO and SCOR, Paris and Newark 64 ppGoogle Scholar
- GEOHAB (2014) Global ecology and oceanography of harmful algal blooms: synthesis open science meeting. Berdalet E, Bernard S, Burford MA et al (eds) IOC and SCOR, Paris and Newark, Delaware, USA 78 ppGoogle Scholar
- Glibert PM, Al-Azri A, Allen JI et al (2018a) Key questions and recent research advances on harmful algal blooms in in relation to nutrients and eutrophication. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 229–259CrossRefGoogle Scholar
- Glibert PM, Beusen AHW, Harrison JA et al (2018b) Changing land, sea- and airscapes: sources of nutrient pollution affecting habitat suitability for harmful algae. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 53–76CrossRefGoogle Scholar
- Glibert PM, Burford M (2017) Globally changing nutrient loads and harmful algal blooms: recent advances, new paradigms, and continuing challenges. Oceanography 30(1):58–69. https://doi.org/10.5670/oceanog.2017.110 CrossRefGoogle Scholar
- Glibert PM, Pitcher GC, Bernard S et al (2018c) Advancements and continuing challenges of emerging technologies and tools for detecting harmful algal blooms, their antecedent conditions and toxins, and applications in predictive models. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 339–357CrossRefGoogle Scholar
- Gobler CJ, Sunda WG (2012) Ecosystem disruptive algal blooms of the brown tide species, Aureococcus anophagefferens and Aureoumbra lagunensis. Harmful Algae 14:36–45CrossRefGoogle Scholar
- Goes JI, Gomes HR, Al-Hashimi K et al (2018) Ecological drivers of green Noctiluca blooms in two monsoonally driven ecosystems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 327–336CrossRefGoogle Scholar
- Greenfield DI, Marin R III, Doucette GJ et al (2008) Field applications of the second-generation environmental sample processor (ESP) for remote detection of harmful algae, 2006-2007. Limnol Oceanogr Methods 6:667–679CrossRefGoogle Scholar
- HABWATCH (2004) In: Babin M, Roesler C, Cullen J (eds) Real-time coastal observing systems for marine ecosystem dynamics and harmful algal blooms: theory, instrumentation and modelling. Oceanographic methodology series. UNESCO Printers, p 799Google Scholar
- Hallegraeff GM (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 46:220–235CrossRefGoogle Scholar
- Hamilton DP, Wood SA, Dietrich DR et al (2014) Costs of harmful blooms of freshwater cyanobacteria. In: Sharma NK, Rai AK, Stal LJ (eds) Cyanobacteria: an economic perspective, 1st edn. Wiley, New York, pp 245–256Google Scholar
- Heisler J, Glibert PM, Burkholder JM et al (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13CrossRefPubMedPubMedCentralGoogle Scholar
- Hernández C, Díaz PA, Molinet C et al (2016) Exceptional climate anomalies and northwards expansion of Paralytic Shellfish Poisoning outbreaks in Southern Chile. Harmful Algae News 54:1–2CrossRefGoogle Scholar
- Hoagland P, Anderson DM, Kaoru Y et al (2002) The economic effects of harmful algal blooms in the United States: estimates, assessment issues, and information needs. Estuaries 25:677–695CrossRefGoogle Scholar
- Ianora A, Bentley MG, Caldwell GS et al (2011) The relevance of marine chemical ecology to plankton and ecosystem function: an emerging field. Mar Drugs 9:1625–1648CrossRefPubMedPubMedCentralGoogle Scholar
- Jaffe JS, Franks PJS, Briseno C et al (2013) Advances in underwater fluorometry, from bulk fluorescence to planar laser imaging of individuals. In: Watson J, Zielinski O (eds) Subsea optics and imaging. Woodhead Publishing, Cambridge, pp 536–549CrossRefGoogle Scholar
- Jauzein C, Fricke A, Mangialajo L et al (2016) Sampling of Ostreopsis cf. ovata using artificial substrates: optimization of methods for the monitoring of benthic harmful algal blooms. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2016.03.047
- Jeffery B, Barlow T, Moizer K, Paul S et al (2004) Amnesic shellfish poison. Food Chem Toxicol 42:545–557CrossRefPubMedGoogle Scholar
- Kremp A, Tahvanainen P, Litaker W et al (2014) Phylogenetic relationships, morphological variation, and toxin patterns in the Alexandrium ostenfeldii (Dinophyceae) complex: implications for species boundaries and identities. J Phycol 50:81–100CrossRefPubMedGoogle Scholar
- Krüger T, Mönch B, Oppenhäuser S et al (2010) LC-MS/MS determination of the isomeric neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (2,4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revoluta and Lathyrus latifolius. Toxicon 55:547–557CrossRefPubMedGoogle Scholar
- Kudela RM, Berdalet E, Bernard S et al (2015) Harmful algal blooms – a scientific summary for policy makers. IOC/UNESCO, Paris IOC/INF-1320Google Scholar
- Kudela RM, Berdalet E, Enevoldsen H et al (2017) GEOHAB–The Global Ecology and Oceanography of Harmful Algal Blooms Program: motivation, goals, and legacy. Oceanography 30:12–21CrossRefGoogle Scholar
- Kudela RM, Berdalet E, Enevoldsen H et al (2018) Establishment, goals, and legacy of the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) Program. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 27–49CrossRefGoogle Scholar
- Kudela RM, Howard MDA, Jenkins BD et al (2010a) Using the molecular toolbox to compare harmful algal blooms in upwelling systems. Prog Oceanogr 85:108–121CrossRefGoogle Scholar
- Kudela RM, Seeyave S, Cochlan WP (2010b) The role of nutrients in regulation and promotion of harmful algal blooms in upwelling systems. Prog Oceanogr 85:122–135CrossRefGoogle Scholar
- Lelong A, Hégaret H, Soudant P et al (2012) Pseudo-nitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms. Phycologia 51:168–216CrossRefGoogle Scholar
- Lim HC, Leaw CP, Tan TH et al (2014) A bloom of Karlodinium australe (Gymnodiniales, Dinophyceae) associated with mass mortality of cage cultured fishes in West Johor Strait, Malaysia. Harmful Algae 40:51–62CrossRefGoogle Scholar
- Liu D, Zhou M (2018) Green tides of the Yellow Sea: massive free-floating blooms of Ulva prolifera. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 317–326CrossRefGoogle Scholar
- Lunven M, Guillaud JF, Youenou A et al (2005) Nutrient and phytoplankton distribution in the Loire River plume (Bay of Biscay, France) resolved by a new fine scale sampler. Estuar Coast Shelf Sci 65:94–108CrossRefGoogle Scholar
- Lunven M, Landeira JM, Lehaître M et al (2012) In situ video and fluorescence analysis (VFA) of marine particles: applications to phytoplankton ecological studies. Limnol Oceanogr Methods 10:807–823CrossRefGoogle Scholar
- Mangialajo L, Fricke A, Perez-Gutierrez G et al (2017) Benthic Dinoflagellate Integrator (BEDI): a new method for the quantification of benthic harmful algal blooms. Harmful Algae 64:1–10CrossRefPubMedGoogle Scholar
- Masó M, Garcés E, Pagès F et al (2003) Drifting plastic debris as a potential vector for dispersing harmful algal bloom (HAB) species. Sci Mar 67:107–111CrossRefGoogle Scholar
- Moore MN, Depledge MH, Fleming LE et al (2013) Oceans and Human Health (OHH): a European perspective from the Marine Board of the European Science Foundation (Marine Board-ESF). Microb Ecol 65:889–900CrossRefPubMedGoogle Scholar
- Moore SK, Johnstone JA, Banas NS et al (2015) Present-day and future climate pathways affecting Alexandrium blooms in Puget Sound, WA, U.S. Harmful Algae 48:1–15CrossRefPubMedGoogle Scholar
- O’Neil JM, Davis TW, Burford MA et al (2012) The rise of harmful cyanobacteria blooms (CHABs): role of eutrophication and climate change in freshwater, estuarine and marine ecosystems. Harmful Algae 14:313–334CrossRefGoogle Scholar
- Paerl HW, Fluton RS, Moisander PH et al (2001) Harmful freshwater algal blooms. Sci World J 1:76–113CrossRefGoogle Scholar
- Pearson LA, Dittmann E, Mazmouz R et al (2016) The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. Harmful Algae 54:98–111CrossRefPubMedGoogle Scholar
- Pitcher G, Kudela RM, Reguera B et al (2018) Key questions and recent research advances on harmful algal blooms in eastern boundary upwelling systems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 205–227CrossRefGoogle Scholar
- Price C, Black KD, Hargave BT et al (2015) Marine cage culture and the environment: effects on water quality and primary production. Mar Ecol Prog Ser 6:151–174Google Scholar
- Roy S, Montresor M, Cembella A (2018) Key questions and recent research advances on harmful algal blooms in fjords and coastal embayments. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 187–203CrossRefGoogle Scholar
- Ryan JP, McManus MA, Sullivan JM (2010) Interacting physical, chemical and biological forcing of phytoplankton thin-layer variability in Monterey Bay, California. Cont Shelf Res 30:7–16CrossRefGoogle Scholar
- Selander S, Kubanek J, Hamberg M et al (2015) Predator lipids induce paralytic shellfish toxins in bloom-forming algae. Proc Natl Acad Sci USA 112:6395–6400CrossRefPubMedGoogle Scholar
- Smayda TJ (2010a) Adaptations and selection of harmful and other dinoflagellate species in upwelling systems 1. Morphology and adaptive polymorphism. Prog Oceanogr 85:53–70CrossRefGoogle Scholar
- Smayda TJ (2010b) Adaptations and selection of harmful and other dinoflagellate species in upwelling systems 2. Motility and migratory behaviour. Prog Oceanogr 85:71–91CrossRefGoogle Scholar
- Smetacek V, Zingone A (2013) Green and golden seaweed tides on the rise. Nature 504:84–88CrossRefPubMedGoogle Scholar
- Tester PA, Kibler SA, Holland WC et al (2014) Sampling harmful benthic dinoflagellates: comparison of artificial and natural substrate methods. Harmful Algae 39:8–25CrossRefGoogle Scholar
- Timmerman AHV, McManus MA, Cheriton OM et al (2014) Hidden thin layers of toxic diatoms in a coastal bay. Deep Sea Res II Top Stud Oceanogr 101:129–140CrossRefGoogle Scholar
- Trainer VL, Kameneva P (2017) Conditions promoting extreme Pseudo-nitzschia events in the eastern but not the western Pacific. PICES Scientific Report, North Pacific Marine Science Organization (PICES), Sidney, BC, CanadaGoogle Scholar
- Trainer VL, Pitcher GC, Reguera B et al (2010) The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems. Prog Oceanogr 85:35–52CrossRefGoogle Scholar
- Trainer VL, Yoshida T (eds) (2014) Proceedings of the Workshop on Economic impacts of harmful algal blooms on fisheries and aquaculture. PICES Scientific Report No. 47, p 85Google Scholar
- Turner AD, McNabb PS, Harwood DT et al (2015) Single laboratory validation of a multi-toxin UPLC-HILIC-MS/MS method for quantitation of paralytic shellfish toxins in bivalve shellfish. J AOAC Int 98:609–621CrossRefPubMedGoogle Scholar
- Van Wagoner RM, Deeds JR, Satake M (2008) Isolation and characterization of karlotoxin 1, a new amphipathic toxin from Karlodinium veneficum. Tetrahedron Lett 49:6457–6461CrossRefPubMedPubMedCentralGoogle Scholar
- Wells ML, Karlson B (2018) Harmful algal blooms in a changing ocean. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 77–90CrossRefGoogle Scholar
- Wells ML, Trainer VL, Smayda TJ et al (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93CrossRefPubMedPubMedCentralGoogle Scholar
- Yogi K, Oshiro N, Inafuku Y et al (2011) Detailed LC-MS/MS analysis of ciguatoxins revealing distinct regional and species characteristics in fish and causative algae from the Pacific. Anal Chem 83:8886–8891CrossRefPubMedGoogle Scholar