Advertisement

GlobalHAB: Fostering International Coordination on Harmful Algal Bloom Research in Aquatic Systems

  • Elisa Berdalet
  • Raphael M. Kudela
  • Neil S. Banas
  • Eileen Bresnan
  • Michele A. Burford
  • Keith Davidson
  • Christopher J. Gobler
  • Bengt Karlson
  • Po Teen Lim
  • Lincoln Mackenzie
  • Marina Montresor
  • Vera L. Trainer
  • Gires Usup
  • Kedong Yin
  • Henrik Enevoldsen
  • Ed Urban
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 232)

Abstract

GlobalHAB, “Global Harmful Algal Blooms,” is a new scientific programme on harmful algal blooms (HABs) cosponsored by the Intergovernmental Oceanographic Commission (IOC) of UNESCO and the Scientific Committee on Oceanic Research (SCOR) that will operate for 10 years from 2016 to 2025. GlobalHAB builds on the solid foundation established by the former programme GEOHAB and will continue to promote coordinated international scientific activities, which is fundamental to keep progressing on the comprehension of the global complexity of HABs and that will contribute to the management and mitigation of their impacts worldwide. The GlobalHAB Scientific and Implementation Plan is briefly presented in this chapter.

Notes

Acknowledgments

The GlobalHAB Scientific Steering Committee acknowledges the financial support provided by IOC and by SCOR through Grants OCE 12-1243377 and OCE-1546580 from the US National Science Foundation and from ICES, IPHAB, ISSHA, PICES, and the Scottish Association for Marine Science.

References

  1. Anderson CR, Kudela RM, Kahru M et al (2016) Initial skill assessment of the California Harmful Algae Risk Mapping (C-HARM) system. Harmful Algae 59:1–8CrossRefPubMedGoogle Scholar
  2. Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:562–584CrossRefGoogle Scholar
  3. Anderson DM, Keafer BA, Kleindinst JL et al (2014) Alexandrium fundyense cysts in the Gulf of Maine: long-term time series of abundance and distribution, and linkages to past and future blooms. Deep Sea Res II Top Stud Oceanogr 103:6–26CrossRefGoogle Scholar
  4. Anderson DM, Pitcher GC, Estrada M (2005) The comparative “systems” approach to HAB research. Oceanography 18:148–157CrossRefGoogle Scholar
  5. Azanza RV, Brosnahan ML, Anderson DM et al (2018) The role of life cycle characteristics in harmful algal bloom dynamics. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 133–161Google Scholar
  6. Berdalet E, McManus MA, Ross ON et al (2014) Understanding harmful algae in stratified systems: review of progress and future directions. Deep Sea Res II Top Stud Oceanogr 101:4–20CrossRefGoogle Scholar
  7. Berdalet E, Tester PA, Chinain M et al (2017a) Harmful algal blooms in benthic systems: recent progresses and future research. Oceanography 30:36–45CrossRefGoogle Scholar
  8. Berdalet E, Montresor M, Reguera B et al (2017b) Harmful algal blooms in fjords and coastal embayments and stratified systems: recent progress and future research. Oceanography 30:46–57CrossRefGoogle Scholar
  9. Berdalet E, Tester P (2018) Key questions and recent research advances on harmful algal blooms in benthic systems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 261–286CrossRefGoogle Scholar
  10. Black EA, Whyth JNC, Bagshaw JW et al (1991) The effects of Heterosigma akashiwo on juvenile Oncorhynchus tshawytscha and its implications for fish culture. J Appl Ichthyol 7:168–175CrossRefGoogle Scholar
  11. Boada LD, Zumbado M, Luzardo OP et al (2010) Ciguatera fish poisoning on the West Africa Coast: an emerging risk in the Canary Islands (Spain). Toxicon 56:1516–1519PubMedPubMedCentralGoogle Scholar
  12. Borcier AE, Morvezen R, Boudry P et al (2017) Effects of bioactive extracellular compounds and paralytic shellfish toxins produced by Alexandrium minutum on growth and behaviour of juvenile great scallops Pecten maximus. Aquat Toxicol.  https://doi.org/10.1016/j.aquatox.2017.01.009CrossRefPubMedGoogle Scholar
  13. Brosnahan ML, Velo-Suárez L, Ralston DK et al (2015) Rapid growth and concerted sexual transitions by a bloom of the harmful dinoflagellate Alexandrium fundyense (Dinophyceae). Limnol Oceanogr 60:2059–2078CrossRefPubMedPubMedCentralGoogle Scholar
  14. Burford M, Hamilton DP, Wood SA (2018) Emerging HAB research issues in freshwater environments. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 381–402CrossRefGoogle Scholar
  15. Burkholder JM, Glibert PM, Skelton H (2008) Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77–93CrossRefGoogle Scholar
  16. Campbell L, Olson RJ, Sosik HM et al (2010) First harmful Dinophysis (Dinophyceae, Dinophysiales) bloom in the U.S. revealed by automated imaging flow cytometry. J Phycol 46:66–75CrossRefGoogle Scholar
  17. Chambouvet A, Morin P, Marie D et al (2008) Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322(5905):1254–1257CrossRefPubMedGoogle Scholar
  18. Clement A, Lincoqueo L, Saldivia M et al (2016) Exceptional summer conditions and HABs of Pseudochattonella in Southern Chile create record impacts on salmon farms. Harmful Algae News 53:1–3CrossRefGoogle Scholar
  19. Dahl E, Tangen K (1993) 25 years experience with Gyrodinium aureolum in Norwegian waters. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, New York, pp 15–21Google Scholar
  20. Davidson K, Anderson DM, Mateus M et al (2016) Forecasting the risk of harmful algal blooms. Harmful Algae 53:1–7CrossRefPubMedGoogle Scholar
  21. Davidson K, Gowen RJ, Harrison PJ (2014) Anthropogenic nutrients and harmful algae in coastal waters. J Environ Manage 146:206–216CrossRefPubMedGoogle Scholar
  22. Dyson K, Huppert DD (2010) Regional economic impacts of razor clam beach closures due to harmful algal blooms (HABs) on the Pacific coast of Washington. Harmful Algae 9:264–271CrossRefGoogle Scholar
  23. Flynn KJ, Mitra A, Glibert PM et al (2018) Mixotrophy in HABs: by whom, on whom, when, why, and what next. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 113–132CrossRefGoogle Scholar
  24. Foloni-Neto H, Lueck R, Mabuchi Y et al (2014) A new quasi-horizontal glider to measure biophysical microstructure. J Atmos Ocean Technol 31:2278–2293.  https://doi.org/10.1175/JTECH-D-13-00240.1CrossRefGoogle Scholar
  25. Franks PJS (2018) Recent advances in modelling of harmful algal blooms. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 359–377CrossRefGoogle Scholar
  26. Friedman MA, Fernandez M, Backer L et al (2017) An updated review of ciguatera fish poisoning: clinical, epidemiological, environmental, and public health management. Mar Drugs 15(72).  https://doi.org/10.3390/md15030072CrossRefPubMedCentralGoogle Scholar
  27. Fukuyo Y, Imai I, Kodama M et al (2002) Red tides and harmful algal blooms in Japan. In: Taylor FJ, Trainer VL (eds) Harmful algal blooms in the PICES region of the North Pacific. PICES, Scientific Report No. 23. North Pacific Marine Science Organization (PICES), Sidney, BC, pp 7–20Google Scholar
  28. GEOHAB (2001) Global ecology and oceanography of harmful algal blooms, science plan. Glibert PM, Pitcher G (eds) SCOR and IOC, Baltimore and Paris 87 ppGoogle Scholar
  29. GEOHAB (2003) Global ecology and oceanography of harmful algal blooms, implementation plan. Gentien P, Pitcher G, Cembella A et al (eds) SCOR and IOC, Baltimore and Paris, 36 ppGoogle Scholar
  30. GEOHAB (2011) GEOHAB modelling: a workshop report. McGillicuddy DJ Jr, Glibert PM, Berdalet E et al (eds), IOC and SCOR, Paris and Newark, Delaware 85 ppGoogle Scholar
  31. GEOHAB (2012) Global ecology and oceanography of harmful algal blooms: core research project – harmful algal blooms in benthic systems. Berdalet E, Tester P, Zingone A (eds) IOC of UNESCO and SCOR, Paris and Newark 64 ppGoogle Scholar
  32. GEOHAB (2014) Global ecology and oceanography of harmful algal blooms: synthesis open science meeting. Berdalet E, Bernard S, Burford MA et al (eds) IOC and SCOR, Paris and Newark, Delaware, USA 78 ppGoogle Scholar
  33. Glibert PM, Al-Azri A, Allen JI et al (2018a) Key questions and recent research advances on harmful algal blooms in in relation to nutrients and eutrophication. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 229–259CrossRefGoogle Scholar
  34. Glibert PM, Beusen AHW, Harrison JA et al (2018b) Changing land, sea- and airscapes: sources of nutrient pollution affecting habitat suitability for harmful algae. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 53–76CrossRefGoogle Scholar
  35. Glibert PM, Burford M (2017) Globally changing nutrient loads and harmful algal blooms: recent advances, new paradigms, and continuing challenges. Oceanography 30(1):58–69.  https://doi.org/10.5670/oceanog.2017.110 CrossRefGoogle Scholar
  36. Glibert PM, Pitcher GC, Bernard S et al (2018c) Advancements and continuing challenges of emerging technologies and tools for detecting harmful algal blooms, their antecedent conditions and toxins, and applications in predictive models. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 339–357CrossRefGoogle Scholar
  37. Gobler CJ, Sunda WG (2012) Ecosystem disruptive algal blooms of the brown tide species, Aureococcus anophagefferens and Aureoumbra lagunensis. Harmful Algae 14:36–45CrossRefGoogle Scholar
  38. Goes JI, Gomes HR, Al-Hashimi K et al (2018) Ecological drivers of green Noctiluca blooms in two monsoonally driven ecosystems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 327–336CrossRefGoogle Scholar
  39. Greenfield DI, Marin R III, Doucette GJ et al (2008) Field applications of the second-generation environmental sample processor (ESP) for remote detection of harmful algae, 2006-2007. Limnol Oceanogr Methods 6:667–679CrossRefGoogle Scholar
  40. HABWATCH (2004) In: Babin M, Roesler C, Cullen J (eds) Real-time coastal observing systems for marine ecosystem dynamics and harmful algal blooms: theory, instrumentation and modelling. Oceanographic methodology series. UNESCO Printers, p 799Google Scholar
  41. Hallegraeff GM (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 46:220–235CrossRefGoogle Scholar
  42. Hamilton DP, Wood SA, Dietrich DR et al (2014) Costs of harmful blooms of freshwater cyanobacteria. In: Sharma NK, Rai AK, Stal LJ (eds) Cyanobacteria: an economic perspective, 1st edn. Wiley, New York, pp 245–256Google Scholar
  43. Heisler J, Glibert PM, Burkholder JM et al (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hernández C, Díaz PA, Molinet C et al (2016) Exceptional climate anomalies and northwards expansion of Paralytic Shellfish Poisoning outbreaks in Southern Chile. Harmful Algae News 54:1–2CrossRefGoogle Scholar
  45. Hoagland P, Anderson DM, Kaoru Y et al (2002) The economic effects of harmful algal blooms in the United States: estimates, assessment issues, and information needs. Estuaries 25:677–695CrossRefGoogle Scholar
  46. Ianora A, Bentley MG, Caldwell GS et al (2011) The relevance of marine chemical ecology to plankton and ecosystem function: an emerging field. Mar Drugs 9:1625–1648CrossRefPubMedPubMedCentralGoogle Scholar
  47. Jaffe JS, Franks PJS, Briseno C et al (2013) Advances in underwater fluorometry, from bulk fluorescence to planar laser imaging of individuals. In: Watson J, Zielinski O (eds) Subsea optics and imaging. Woodhead Publishing, Cambridge, pp 536–549CrossRefGoogle Scholar
  48. Jauzein C, Fricke A, Mangialajo L et al (2016) Sampling of Ostreopsis cf. ovata using artificial substrates: optimization of methods for the monitoring of benthic harmful algal blooms. Mar Pollut Bull.  https://doi.org/10.1016/j.marpolbul.2016.03.047
  49. Jeffery B, Barlow T, Moizer K, Paul S et al (2004) Amnesic shellfish poison. Food Chem Toxicol 42:545–557CrossRefPubMedGoogle Scholar
  50. Kremp A, Tahvanainen P, Litaker W et al (2014) Phylogenetic relationships, morphological variation, and toxin patterns in the Alexandrium ostenfeldii (Dinophyceae) complex: implications for species boundaries and identities. J Phycol 50:81–100CrossRefPubMedGoogle Scholar
  51. Krüger T, Mönch B, Oppenhäuser S et al (2010) LC-MS/MS determination of the isomeric neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (2,4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revoluta and Lathyrus latifolius. Toxicon 55:547–557CrossRefPubMedGoogle Scholar
  52. Kudela RM, Berdalet E, Bernard S et al (2015) Harmful algal blooms – a scientific summary for policy makers. IOC/UNESCO, Paris IOC/INF-1320Google Scholar
  53. Kudela RM, Berdalet E, Enevoldsen H et al (2017) GEOHAB–The Global Ecology and Oceanography of Harmful Algal Blooms Program: motivation, goals, and legacy. Oceanography 30:12–21CrossRefGoogle Scholar
  54. Kudela RM, Berdalet E, Enevoldsen H et al (2018) Establishment, goals, and legacy of the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) Program. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 27–49CrossRefGoogle Scholar
  55. Kudela RM, Howard MDA, Jenkins BD et al (2010a) Using the molecular toolbox to compare harmful algal blooms in upwelling systems. Prog Oceanogr 85:108–121CrossRefGoogle Scholar
  56. Kudela RM, Seeyave S, Cochlan WP (2010b) The role of nutrients in regulation and promotion of harmful algal blooms in upwelling systems. Prog Oceanogr 85:122–135CrossRefGoogle Scholar
  57. Lelong A, Hégaret H, Soudant P et al (2012) Pseudo-nitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms. Phycologia 51:168–216CrossRefGoogle Scholar
  58. Lim HC, Leaw CP, Tan TH et al (2014) A bloom of Karlodinium australe (Gymnodiniales, Dinophyceae) associated with mass mortality of cage cultured fishes in West Johor Strait, Malaysia. Harmful Algae 40:51–62CrossRefGoogle Scholar
  59. Liu D, Zhou M (2018) Green tides of the Yellow Sea: massive free-floating blooms of Ulva prolifera. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 317–326CrossRefGoogle Scholar
  60. Lunven M, Guillaud JF, Youenou A et al (2005) Nutrient and phytoplankton distribution in the Loire River plume (Bay of Biscay, France) resolved by a new fine scale sampler. Estuar Coast Shelf Sci 65:94–108CrossRefGoogle Scholar
  61. Lunven M, Landeira JM, Lehaître M et al (2012) In situ video and fluorescence analysis (VFA) of marine particles: applications to phytoplankton ecological studies. Limnol Oceanogr Methods 10:807–823CrossRefGoogle Scholar
  62. Mangialajo L, Fricke A, Perez-Gutierrez G et al (2017) Benthic Dinoflagellate Integrator (BEDI): a new method for the quantification of benthic harmful algal blooms. Harmful Algae 64:1–10CrossRefPubMedGoogle Scholar
  63. Masó M, Garcés E, Pagès F et al (2003) Drifting plastic debris as a potential vector for dispersing harmful algal bloom (HAB) species. Sci Mar 67:107–111CrossRefGoogle Scholar
  64. Moore MN, Depledge MH, Fleming LE et al (2013) Oceans and Human Health (OHH): a European perspective from the Marine Board of the European Science Foundation (Marine Board-ESF). Microb Ecol 65:889–900CrossRefPubMedGoogle Scholar
  65. Moore SK, Johnstone JA, Banas NS et al (2015) Present-day and future climate pathways affecting Alexandrium blooms in Puget Sound, WA, U.S. Harmful Algae 48:1–15CrossRefPubMedGoogle Scholar
  66. O’Neil JM, Davis TW, Burford MA et al (2012) The rise of harmful cyanobacteria blooms (CHABs): role of eutrophication and climate change in freshwater, estuarine and marine ecosystems. Harmful Algae 14:313–334CrossRefGoogle Scholar
  67. Paerl HW, Fluton RS, Moisander PH et al (2001) Harmful freshwater algal blooms. Sci World J 1:76–113CrossRefGoogle Scholar
  68. Pearson LA, Dittmann E, Mazmouz R et al (2016) The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. Harmful Algae 54:98–111CrossRefPubMedGoogle Scholar
  69. Pitcher G, Kudela RM, Reguera B et al (2018) Key questions and recent research advances on harmful algal blooms in eastern boundary upwelling systems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 205–227CrossRefGoogle Scholar
  70. Price C, Black KD, Hargave BT et al (2015) Marine cage culture and the environment: effects on water quality and primary production. Mar Ecol Prog Ser 6:151–174Google Scholar
  71. Roy S, Montresor M, Cembella A (2018) Key questions and recent research advances on harmful algal blooms in fjords and coastal embayments. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 187–203CrossRefGoogle Scholar
  72. Ryan JP, McManus MA, Sullivan JM (2010) Interacting physical, chemical and biological forcing of phytoplankton thin-layer variability in Monterey Bay, California. Cont Shelf Res 30:7–16CrossRefGoogle Scholar
  73. Selander S, Kubanek J, Hamberg M et al (2015) Predator lipids induce paralytic shellfish toxins in bloom-forming algae. Proc Natl Acad Sci USA 112:6395–6400CrossRefPubMedGoogle Scholar
  74. Smayda TJ (2010a) Adaptations and selection of harmful and other dinoflagellate species in upwelling systems 1. Morphology and adaptive polymorphism. Prog Oceanogr 85:53–70CrossRefGoogle Scholar
  75. Smayda TJ (2010b) Adaptations and selection of harmful and other dinoflagellate species in upwelling systems 2. Motility and migratory behaviour. Prog Oceanogr 85:71–91CrossRefGoogle Scholar
  76. Smetacek V, Zingone A (2013) Green and golden seaweed tides on the rise. Nature 504:84–88CrossRefPubMedGoogle Scholar
  77. Tester PA, Kibler SA, Holland WC et al (2014) Sampling harmful benthic dinoflagellates: comparison of artificial and natural substrate methods. Harmful Algae 39:8–25CrossRefGoogle Scholar
  78. Timmerman AHV, McManus MA, Cheriton OM et al (2014) Hidden thin layers of toxic diatoms in a coastal bay. Deep Sea Res II Top Stud Oceanogr 101:129–140CrossRefGoogle Scholar
  79. Trainer VL, Kameneva P (2017) Conditions promoting extreme Pseudo-nitzschia events in the eastern but not the western Pacific. PICES Scientific Report, North Pacific Marine Science Organization (PICES), Sidney, BC, CanadaGoogle Scholar
  80. Trainer VL, Pitcher GC, Reguera B et al (2010) The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems. Prog Oceanogr 85:35–52CrossRefGoogle Scholar
  81. Trainer VL, Yoshida T (eds) (2014) Proceedings of the Workshop on Economic impacts of harmful algal blooms on fisheries and aquaculture. PICES Scientific Report No. 47, p 85Google Scholar
  82. Turner AD, McNabb PS, Harwood DT et al (2015) Single laboratory validation of a multi-toxin UPLC-HILIC-MS/MS method for quantitation of paralytic shellfish toxins in bivalve shellfish. J AOAC Int 98:609–621CrossRefPubMedGoogle Scholar
  83. Van Wagoner RM, Deeds JR, Satake M (2008) Isolation and characterization of karlotoxin 1, a new amphipathic toxin from Karlodinium veneficum. Tetrahedron Lett 49:6457–6461CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wells ML, Karlson B (2018) Harmful algal blooms in a changing ocean. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 77–90CrossRefGoogle Scholar
  85. Wells ML, Trainer VL, Smayda TJ et al (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93CrossRefPubMedPubMedCentralGoogle Scholar
  86. Yogi K, Oshiro N, Inafuku Y et al (2011) Detailed LC-MS/MS analysis of ciguatoxins revealing distinct regional and species characteristics in fish and causative algae from the Pacific. Anal Chem 83:8886–8891CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Elisa Berdalet
    • 1
  • Raphael M. Kudela
    • 2
  • Neil S. Banas
    • 3
  • Eileen Bresnan
    • 4
  • Michele A. Burford
    • 5
  • Keith Davidson
    • 6
  • Christopher J. Gobler
    • 7
  • Bengt Karlson
    • 8
  • Po Teen Lim
    • 9
  • Lincoln Mackenzie
    • 10
  • Marina Montresor
    • 11
  • Vera L. Trainer
    • 12
  • Gires Usup
    • 13
  • Kedong Yin
    • 14
  • Henrik Enevoldsen
    • 15
  • Ed Urban
    • 16
  1. 1.Institute of Marine Sciences (CSIC)BarcelonaSpain
  2. 2.University of CaliforniaSanta CruzUSA
  3. 3.University of StrathclydeGlasgowUK
  4. 4.Marine Scotland ScienceAberdeenUK
  5. 5.Australian Rivers InstituteGriffith UniversityNathanAustralia
  6. 6.The Scottish Association for Marine Science, Scottish Marine InstituteObanUK
  7. 7.Stony Brook UniversitySouthamptonUSA
  8. 8.Swedish Meteorological and Hydrological InstituteVästra FrölundaSweden
  9. 9.Institute of Ocean and Earth SciencesUniversity of MalayaKuala LumpurMalaysia
  10. 10.Cawthron InstituteNelsonNew Zealand
  11. 11.Stazione Zoologica Anton DohrnNapoliItaly
  12. 12.Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric AdministrationSeattleUSA
  13. 13.School of Environmental and Resource Science, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  14. 14.Sun Yat-Sen (Zhongshan) UniversityGuangzhouChina
  15. 15.IOC UNESCO/University of CopenhagenNørregadeDenmark
  16. 16.Scientific Committee on Oceanic ResearchNewarkUSA

Personalised recommendations