Advertisement

Harmful Algal Blooms and the Importance of Understanding Their Ecology and Oceanography

  • Patricia M. Glibert
  • Elisa Berdalet
  • Michele A. Burford
  • Grant C. Pitcher
  • Mingjiang Zhou
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 232)

Abstract

The complexity of the harmful algal bloom (HAB) problem, its causative factors, and the impacts HABs have on the environment are becoming well characterized. The benefits of collaborative, cooperative, and comparative studies on HABs are important in advancing the understanding of this phenomenon and to provide scientific guidance to managers. This chapter introduces several aspects of this complex phenomenon, by addressing the following questions: what are HABs, how are they harmful, where do they occur, why are they expanding, and why the need for an improved understanding of their ecology and oceanography? In so doing, this chapter lays the foundation for the following chapters in this volume that probe these questions and the related advancements in research in more detail.

Notes

Acknowledgments

This chapter is a contribution of the University of Maryland Center for Environmental Science (No. 5403).

References

  1. Al-Azri A, Al-Hashmi K, Goes J et al (2007) Seasonality of the bloom-forming heterotrophic dinoflagellates Noctiluca scintillans in the Gulf of Oman in relation to environmental conditions. Int J Oceans Oceanogr 2(1):51–60Google Scholar
  2. Al-Azri A, Piontkovski SA, Al-Hashmi KA et al (2014) Mesoscale and nutrient conditions associated with the massive 2008 Cochlodinium polykrikoides bloom in the Sea of Oman/Arabian Gulf. Estuar Coasts 37:325–338CrossRefGoogle Scholar
  3. Alvarez-Salgado XA, Figueiras FG, Perez FF et al (2003) The Portugal coastal counter current of NW Spain: new insights on its biogeochemical variability. Prog Oceanogr 56:281–321CrossRefGoogle Scholar
  4. Anderson DM (1989) Toxic algal blooms and red tides: a global perspective. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science and toxicology. Elsevier, New York, pp 11–16Google Scholar
  5. Azanza RV, Brosnahan ML, Anderson DM et al (2018) The role of life cycle characteristics in harmful algal bloom dynamics. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 131–161Google Scholar
  6. Backer LC, McGillicuddy DJ Jr (2006) Harmful algal blooms at the interface between coastal oceanography and human health. Oceanography 19(2):94–106CrossRefPubMedGoogle Scholar
  7. Berdalet E, Kudela RM, Banas NS et al (2018) GlobalHAB: fostering international coordination on harmful algal bloom research in aquatic systems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 425–447Google Scholar
  8. Bláha L, Babica P, Maršálek B (2009) Toxins produced in cyanobacterial water blooms – toxicity and risks. Interdiscip Toxicol 2(2):36–41.  https://doi.org/10.2478/v10102-009-0006-2LCCrossRefPubMedPubMedCentralGoogle Scholar
  9. Bond NA, Cronin MF, Freeland H et al (2015) Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys Res Lett 42:3414–3420.  https://doi.org/10.1002/2015GL063306CrossRefGoogle Scholar
  10. Bouwman AF, Beusen AHW, Glibert PM et al (2013a) Mariculture: significant and expanding cause of coastal nutrient enrichment. Environ Res Lett 8(044026):5.  https://doi.org/10.1088/1748-9326/8/4/044026CrossRefGoogle Scholar
  11. Bouwman AF, Beusen AHW, Overbeek CC et al (2013b) Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Rev Fish Sci 21:112–158CrossRefGoogle Scholar
  12. Bouwman AF, Pawlowski M, Liu C et al (2011) Global hindcasts and future projections of coastal nitrogen and phosphorus loads due to shellfish and seaweed aquaculture. Rev Fish Sci 19:331–357CrossRefGoogle Scholar
  13. Burkholder JM, Glasgow HB Jr (1997) Pfiesteria piscicida and other Pfiesteria-like dinoflagellates: behavior, impacts, and environmental controls. Limnol Oceanogr 42:1052–1075CrossRefGoogle Scholar
  14. Buskey EJ, Liu H, Collumb C et al (2001) The decline and recovery of a persistent Texas brown tide algal bloom in the Laguna Madre (Texas, USA). Estuaries 24:337–346CrossRefGoogle Scholar
  15. Buskey EJ, Stockwell DA (1993) Effects of a persistent “brown tide” on zooplankton populations in the Laguna Madre of South Texas, toxic phytoplankton blooms in the sea. In: Smayda TJ, Shimizu Y (eds) Proceedings of the fifth international conference on toxic marine phytoplankton. Elsevier, Amsterdam, pp 659–666Google Scholar
  16. Cembella AD, Ibarra DA, Diogene J et al (2005) Harmful algal blooms and their assessment in fjords and coastal embayments. Oceanography 18(2):158–171CrossRefGoogle Scholar
  17. Davis TW, Berry DL, Boyer GL et al (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725CrossRefGoogle Scholar
  18. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929.  https://doi.org/10.1126/science.1156401CrossRefPubMedGoogle Scholar
  19. Fistarol GO, Legrand C, Selander E et al (2004) Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquat Microb Ecol 35:45–56CrossRefGoogle Scholar
  20. Flynn KJ, Mitra A, Glibert PM et al (2018) Mixotrophy by HABs: by whom, on whom, when, why and what next. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 113–132Google Scholar
  21. Freeland H, Whitney F (2015) Unusual warming in the Gulf of Alaska. North Pac Mar Organ (PICES) Press 22:51–52Google Scholar
  22. Fu M, Wang Z, Pu X et al (2012) Changes in nutrient concentrations and N:P:Si ratios and their possible impacts on the Huanghai Sea ecosystem. Acta Oceanol Sinica 31:101–112CrossRefGoogle Scholar
  23. Furuya K, Iwataki M, Lim PT et al (2018) Overview of harmful algal blooms in Asia. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 289–308CrossRefGoogle Scholar
  24. Gentien P, Donaghay P, Yamazaki H et al (2005) Harmful algal blooms in stratified systems. Oceanography 18(2):172–183CrossRefGoogle Scholar
  25. GEOHAB (1998) Global ecology and oceanography of harmful algal blooms: a plan for co-ordinated scientific research and co-operation to develop international capabilities for assessment, prediction and mitigation. Cullen, J (ed) Asian Natural Environmental Science Center, The University of Tokyo. 43 ppGoogle Scholar
  26. GEOHAB (2010) GEOHAB Asia, global ecology and oceanography of harmful algal blooms in Asia: a regional comparative programme, Furuya K, Glibert PM, Zhou M et al (eds) IOC and SCOR, Baltimore and Paris, 69 ppGoogle Scholar
  27. Gisselson L-Å, Carlsson P, Granéli E et al (2002) Dinophysis blooms in the deep euphotic zone of the Baltic Sea: do they grow in the dark? Harmful Algae 1:401–418CrossRefGoogle Scholar
  28. Glibert PM, Al-Azri A, Allen JI et al (2018a) Key questions and recent research advances on harmful algal blooms in relation to nutrients and eutrophication. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 229–259CrossRefGoogle Scholar
  29. Glibert PM, Alexander J, Meritt DW et al (2007) Harmful algae pose additional challenges for oyster restoration: impacts of the harmful algae Karlodinium veneficum and Prorocentrum minimum on early life stages of the oysters Crassostrea virginica and Crassostrea ariakensis. J Shellfish Res 26:919–925CrossRefGoogle Scholar
  30. Glibert PM, Beusen AHW, Harrison JA et al (2018b) Changing land-, sea- and airscapes: sources of nutrient pollution affecting habitat suitability for harmful algae. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 53–76CrossRefGoogle Scholar
  31. Glibert PM, Burkholder JM, Kana TM (2012) Recent advances in understanding of relationships between nutrient availability, forms and stoichiometry and the biogeographical distribution, ecophysiology, and food web effects of pelagic and benthic Prorocentrum spp. Harmful Algae 14:231–259CrossRefGoogle Scholar
  32. Glibert PM, Landsberg J, Evans J et al (2002) A fish kill of massive proportion in Kuwait Bay, Arabian Gulf, 2001: the roles of infectious bacteria, harmful algae, and eutrophication. Harmful Algae 1:1–17CrossRefGoogle Scholar
  33. Glibert PM, Maranger R, Sobota DJ et al (2014) The Haber-Bosch–harmful algal bloom (HB-HAB) link. Environ Res Lett 9:105001 (13 p).  https://doi.org/10.1088/1748-9326/9/10/105001CrossRefGoogle Scholar
  34. Glibert PM, Mayorga E, Seitzinger S (2008) Prorocentrum minimum tracks anthropogenic nitrogen and phosphorus inputs on a global basis: application of spatially explicit nutrient export models. Harmful Algae 8:33–38CrossRefGoogle Scholar
  35. Glibert PM, Seitzinger S, Heil CA et al (2005) The role of eutrophication in the global proliferation of harmful algal blooms: new perspectives and new approaches. Oceanography 18(2):198–209CrossRefGoogle Scholar
  36. Goes JI, Gomes HR (2016) An ecosystem in transition: the emergence of mixotrophy in the Arabian Sea. In: Glibert PM, Kana TM (eds) Aquatic microbial ecology and biogeochemistry: a dual perspective. Springer International Pub., Geneva, pp 155–183CrossRefGoogle Scholar
  37. Goes JI, Gomes HR, Al-Hashimi K et al (2018) Ecological drivers of green Noctiluca blooms in two monsoonally-driven ecosystems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 327–336CrossRefGoogle Scholar
  38. Goes JI, Thoppil PG, Gomes HR et al (2005) Warming of the Eurasian land mass is making the Arabian Sea more productive. Science 308:545–547CrossRefPubMedGoogle Scholar
  39. Gomes HR, Goes JI, Matondkar P et al (2008) Blooms of Noctiluca miliaris in the Arabian Sea—an in situ and satellite study. Deep-Sea Res 55(II):751–765CrossRefGoogle Scholar
  40. Granéli E, Carlsson P, Tester P et al (1999) Effects of N:P:Si-ratios and zooplankton grazing on phytoplankton communities in the northern Adriatic Sea. I. Nutrients, phytoplankton, bio- mass, and polysaccharide production. Aquat Microb Ecol 18:37–54CrossRefGoogle Scholar
  41. Granéli E, Johansson N (2003) Effects of the toxic haptophyte Prymnesium parvum on the survival and feeding of a ciliate: the influence of different nutrient conditions. Mar Ecol Prog Ser 254:49–56CrossRefGoogle Scholar
  42. Granéli E, Weberg M, Salomon PS (2008) Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae 8:94–102CrossRefGoogle Scholar
  43. Guzman HM, Cortes J, Gleynn PW et al (1990) Coral mortality associated with dinoflagellate blooms in the eastern Pacific (Costa Rica and Panama). Mar Ecol Prog Ser 60:299–303CrossRefGoogle Scholar
  44. Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99CrossRefGoogle Scholar
  45. Harrison PJ, Furuya K, Glibert PM et al (2011) Geographical distribution of red and green Noctiluca scintillans. Chin J Oceanol Limnol 29:807–883CrossRefGoogle Scholar
  46. Häussermann V, Gutstein CS, Bedington M et al (2017) Largest baleen whale mass mortality during strong El Niño event is likely related to harmful toxic algal bloom. PeerJ 5:e3123.  https://doi.org/10.7717/peerj.3123CrossRefPubMedPubMedCentralGoogle Scholar
  47. Heil CA, Glibert PM, Fan C (2005) Prorocentrum minimum (Pavillard) Schiller – a review of a harmful algal bloom species of growing world-wide importance. Harmful Algae 4:449–470CrossRefGoogle Scholar
  48. Holligan PM (1979) Dinoflagellate blooms associated with tidal fronts around the British Isles. In: Taylor DL, Seliger HH (eds) Toxic dinoflagellate blooms. Elsevier North Holland, New York, pp 249–256Google Scholar
  49. Howard MDA, Jones AC, Schnetzer A et al (2012) Quantitative real-time polymerase chain reaction for Cochlodinium fulvescens (Dinophyceae), a harmful dinoflagellate from California coastal waters. J Phycol 48:384–393CrossRefPubMedGoogle Scholar
  50. Hu CM, Li D, Chen C et al (2010) On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J Geophys Res 115:C05017.  https://doi.org/10.1029/2009JC005561CrossRefGoogle Scholar
  51. Huo Y, Zhang J, Chen L et al (2013) Green algae blooms caused by Ulva prolifera in the southern Yellow Sea: identification of the original bloom location and evaluation of biological processes occurring during the early northward floating period. Limnol Oceanogr 58:2206–2218CrossRefGoogle Scholar
  52. Kim CS, Lee SG, Kim HG et al (1999) Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochlodinium polykrikoides. J Plankton Res 21:2105–2115CrossRefGoogle Scholar
  53. Kim DI, Matsuyama Y, Nagasoe S et al (2004) Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J Plankton Res 26(1):1–66CrossRefGoogle Scholar
  54. Kirkpatrick B, Fleming LE, Backer LC et al (2006) Environmental exposures to Florida red tides: effects on emergency room respiratory diagnoses admissions. Harmful Algae 5:526–533CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kudela R, Pitcher G, Probyn T et al (2005) Harmful algal blooms in coastal upwelling systems. Oceanography 18(2):184–197CrossRefGoogle Scholar
  56. Kudela RM, Ryan JP, Blakeley MD et al (2008) Linking the physiology and ecology of Cochlodinium to better understand harmful algal bloom events: a comparative approach. Harmful Algae 7:278–292CrossRefGoogle Scholar
  57. Lancelot C, Martin JM, Panin N et al (2002) The North-western Black Sea: a pilot site to understand the complex interaction between human activities and the coastal environment. Estuar Coastal Shelf Sci 54:279–283CrossRefGoogle Scholar
  58. Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10:113–390CrossRefGoogle Scholar
  59. Lee DK (2008) Cochlodinium polykrikoides blooms and eco-physical conditions in the South Sea of Korea. Harmful Algae 7:318–323CrossRefGoogle Scholar
  60. Lewis NI, Bates SS, McLachlan JL et al (1993) Temperature effects on growth, domoic acid production, and morphology of the diatom Nitzschia-pungens f. multiseries. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier Science Publications B V, Amsterdam, pp 601–606Google Scholar
  61. Lin C-H, Accoroni S, Glibert PM (2017) Karlodinium veneficum feeding responses and effects on larvae of the eastern oyster Crassostrea virginica under variable nitrogen:phosphorus stoichiometry. Aquat Microb Ecol 79:101–114CrossRefGoogle Scholar
  62. Liu D, Zhou M (2018) Green tides of the Yellow Sea: massive free-floating blooms of Ulva prolifera. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp. 317–326CrossRefGoogle Scholar
  63. Luckenbach MW, Sellner KG, Shumway SE, Greene K (1993) Effects of 2 bloom-forming dinoflagellates, Prorocentrum minimum and Gyrodinium uncatenum, on the growth and survival of the eastern oyster, Crassostrea virginica (Gmelin 1791). J Shellfsh Res 12:411–415Google Scholar
  64. Lundgren V, Glibert PM, Granéli E et al (2016) Metabolic and physiological changes in Prymnesium parvum when grown under, and grazing on, prey of variable nitrogen:phosphorus stoichiometry. Harmful Algae 55:1–12CrossRefPubMedGoogle Scholar
  65. McCabe RM, Hickey BM, Kudela RM et al (2016) An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys Res Lett.  https://doi.org/10.1002/2016GL070023
  66. Mitra A, Flynn F (2005) Predator-prey interactions: is “ecological stoichiometry” sufficient when good food goes bad? J Plankton Res 27:393–399CrossRefGoogle Scholar
  67. Moore SK, Johnstone JA, Banasand NS et al (2015) Present-day and future climate pathways affecting Alexandrium blooms in Puget Sound, WA, U.S. Harmful Algae 48:1–15CrossRefPubMedGoogle Scholar
  68. Moore SK, Trainer VL, Mantua NJ et al (2008) Impacts of climate variability and future change on harmful algal blooms and human health. Environ Health 7:S4.  https://doi.org/10.1186/1476-069X-7-S2-S4CrossRefPubMedPubMedCentralGoogle Scholar
  69. Mulholland MR, Morse RE, Boneillo GE et al (2009) Understanding causes and impacts of the dinoflagellate, Cochlodinium polykrikoides, blooms in the Chesapeake Bay. Estuaries 32:734–747CrossRefGoogle Scholar
  70. O’Neil JM, Davis TW, Burford MA et al (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334CrossRefGoogle Scholar
  71. Ogata T, Sato S, Kodama M (1989) Paralytic shellfish toxins not associated with dinoflagellates. Toxicon 27:1241–1244CrossRefPubMedGoogle Scholar
  72. Parab SG, Matondkar SGP, Gomes H et al (2006) Monsoon driven changes in phytoplankton populations in the eastern Arabian Sea as revealed by microscopy and HPLC pigment analysis. Cont Shelf Res 26:2538–2558CrossRefGoogle Scholar
  73. Parsons ML, Dortch Q, Turner RE (2002) Sedimentological evidence of an increase in Pseudo-nitzschia (Bacillariophyceae) abundance in response to coastal eutrophication. Limnol Oceanogr 47:551–558CrossRefGoogle Scholar
  74. Pearce I, Handlinger JH, Hallegraeff GH (2005) Histopathology in Pacific oyster (Crassostrea gigas) spat caused by the dinoflagellate Prorocentrum rhathymum. Harmful Algae 4:61–74CrossRefGoogle Scholar
  75. Silvagni PA, Lowenstine LJ, Spraker T et al (2005) Pathology of domoic acid toxicity in California sea lions (Zalophus californianus). Vet Pathol 42:184–191CrossRefPubMedGoogle Scholar
  76. Smayda TJ (1998) Ecophysiology and bloom dynamics of Heterosigma akashiwo (Raphidophyceae). In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms, NATO ASI series, vol G41. Springer, Berlin, pp 113–131Google Scholar
  77. Smayda TJ (2002) Adaptive ecology, growth strategies and the global bloom expansion of dinoflagellates. J Oceanogr 58:281–294CrossRefGoogle Scholar
  78. Steidinger KA, Tangen K (1997) Dinoflagellates. In: Tomas C (ed) Identifying marine phytoplankton. Academic Press, New York, pp 387–584CrossRefGoogle Scholar
  79. Stoecker DK, Adolf JE, Place AR et al (2008) Effects of the dinoflagellates Karlodinium veneficum and Prorocentrum minimum on early life history stages of the eastern oyster (Crassostrea virginica). Mar Biol 154:81–90CrossRefGoogle Scholar
  80. Sunda WG, Granéli E, Gobler CJ (2006) Positive feedback and the development and persistence of ecosystem disruptive algal blooms. J Phycol 42:963–974CrossRefGoogle Scholar
  81. Tester PA, Nau AW, Feldman RL et al (2010) Ciguatera fish poisoning and sea surface temperatures in the Caribbean Sea. Toxicon 56:698–710CrossRefPubMedGoogle Scholar
  82. Tomas CR, Smayda TJ (2008) Red tide blooms of Cochlodinium polykrikoides in a coastal cove. Harmful Algae 7:308–317CrossRefGoogle Scholar
  83. Trainer VL, Yoshida T (eds) (2014) Proceedings of the workshop on economic impacts of harmful algal blooms on fisheries and aquaculture. PICES Scientific Reports 47, p 85Google Scholar
  84. Trainer V, Eberhart B-TL, Wekell JC et al (2003) Paralytic shellfish toxins in Puget Sound, Washington State. J Shellfish Res 22:213–223Google Scholar
  85. Villacorte LO, Tabatabai SAA, Dhakal N et al (2015) Algal blooms: an emerging threat to seawater reverse osmosis desalination. Desalin Water Treat 55.  https://doi.org/10.1080/19443994.2014.940649
  86. Visser PM, Verspagen JMH, Sandrini G et al (2016) How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54:145–159CrossRefPubMedGoogle Scholar
  87. Walsby T (1975) Gas vesicles. Annu Rev Plant Phys 26:427–439CrossRefGoogle Scholar
  88. Wells ML, Karlson B (2018) Harmful algal blooms in a changing ocean. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 77–90CrossRefGoogle Scholar
  89. Wells ML, Trainer VL, Smayda TJ et al (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wikfors GH, Smolowitz RM (1995) Experimental and histological studies of 4 life-history stages of the Eastern oyster, Crassostrea virginica, exposed to a cultured strain of the dinoflagellate Prorocentrum minimum. Biol Bull 188:313–328CrossRefPubMedGoogle Scholar
  91. Yan T, Zhou MJ (2004) Environmental and health effects associated with harmful algal bloom and marine algal toxins in China. Biomed Environ Sci 17:165–176PubMedGoogle Scholar
  92. Yu R-C, Lü S-H, Liang Y-B (2018) Harmful algal blooms in the coastal waters of China. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 309–316CrossRefGoogle Scholar
  93. Yuki K, Yoshimatsu S (1989) Two fish-killing of Cochlodinium from Harina-Nada, Seto Inland Sea Japan. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science, and toxicology. Elsevier, New York, pp 451–454Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Patricia M. Glibert
    • 1
  • Elisa Berdalet
    • 2
  • Michele A. Burford
    • 3
  • Grant C. Pitcher
    • 4
  • Mingjiang Zhou
    • 5
  1. 1.University of Maryland Center for Environmental Science, Horn Point LaboratoryCambridgeUSA
  2. 2.Institute of Marine Sciences (CSIC)BarcelonaSpain
  3. 3.Australian Rivers Institute and School of Environment, Griffith UniversityNathanAustralia
  4. 4.Fisheries Research and DevelopmentCape TownSouth Africa
  5. 5.Institute of Oceanology, Chinese Academy of SciencesQingdaoChina

Personalised recommendations