Advertisement

Key Questions and Recent Research Advances on Harmful Algal Blooms in Fjords and Coastal Embayments

  • Suzanne Roy
  • Marina Montresor
  • Allan Cembella
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 232)

Abstract

Coastal systems partially surrounded by land such as coastal embayments, estuaries and fjords have characteristics that affect the development of harmful algal blooms. These include stronger links between the water column and bottom sediments, a limited exchange with offshore waters and greater cell retention. Sub-mesoscale and high-frequency processes are particularly important physical factors that influence pattern and persistence of HABs in coastal systems. Coupling with benthic nutrient fluxes or seed banks from the bottom is enhanced as the degree of physical robustness of these systems decreases. Intraspecific diversity is important for many HAB species, but tools are needed for in situ identification. Alternative metabolic strategies, such as mixotrophy or reliance on organic nutrients and allelochemically mediated species interactions, can play a critical role in the development of HA blooms in such systems.

Notes

Acknowledgements

This is a contribution of the GEOHAB Core Research Project on HABs in Fjords and Coastal Embayments. Support for preparation of this manuscript is gratefully acknowledged within the PACES II Research Programme (Topic II Coast: WP3) of the Alfred-Wegener-Institut, Helmholtz Zentrum für Polar- und Meeresforschung under Earth and Environment, Helmholtz Gemeinschaft, Germany.

References

  1. Anderson DM, McGillicuddy DJ, Degrasse SL et al (2014) Preface to: harmful algae in the Gulf of Maine: oceanography, population dynamics, and toxin transfer in the food web. Deep Sea Res II 103:1–5CrossRefGoogle Scholar
  2. Anderson DM, McGillicuddy D, Townsend D et al (2005) The ecology and oceanography of toxic Alexandrium fundyense blooms in the Gulf of Maine. Deep Sea Res II 52:2365–2876CrossRefGoogle Scholar
  3. Azanza RV, Brosnahan ML, Anderson DM et al (2018) The role of life cycle characteristics in harmful algal bloom dynamics. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 133–161CrossRefGoogle Scholar
  4. Berg GM, Glibert PM, Lomas MW et al (1997) Organic nitrogen uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown tide event. Mar Biol 129:377–387CrossRefGoogle Scholar
  5. Berman T, Bronk DA (2003) Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquat Microb Ecol 31:279–305CrossRefGoogle Scholar
  6. Bolch CJS, De Salas MF (2007) A review of the molecular evidence for ballast water introduction of the toxic dinoflagellates Gymnodinium catenatum and the Alexandrium “tamarensis complex” to Australasia. Harmful Algae 6:465–485CrossRefGoogle Scholar
  7. Bouwman AF, Beusen AHW, Glibert PM et al (2013a) Mariculture: significant and expanding cause of coastal nutrient enrichment. Environ Res Let 8(044026):5.  https://doi.org/10.1088/1748-9326/8/4/044026CrossRefGoogle Scholar
  8. Bouwman AF, Beusen AHW, Overbeek CC et al (2013b) Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Rev Fish Sci 21:112–156CrossRefGoogle Scholar
  9. Bouwman AF, Pawlowski M, Liu C et al (2011) Global hindcasts and future projections of coastal nitrogen and phosphorus loads due to shellfish and seaweed aquaculture. Rev Fish Sci 19:331–357CrossRefGoogle Scholar
  10. Bravo I, Figueroa RI (2014) Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms 2:11–32CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bravo I, Figueroa RI, Garcés E et al (2010) The intricacies of dinoflagellate pellicle cysts: the example of Alexandrium minutum cysts from a bloom-recurrent area (Bay of Baiona, NW Spain). Deep Sea Res II 57:166–174CrossRefGoogle Scholar
  12. Brosnahan ML, Kulis DM, Solow AR et al (2010) Outbreeding lethality between toxic Group I and nontoxic Group III Alexandrium tamarense spp. isolates: predominance of heterotypic encystment and implications for mating interactions and biogeography. Deep Sea Res II 57(3–4):175–189CrossRefGoogle Scholar
  13. Brosnahan ML, Velo-Suárez L, Ralston DK et al (2015) Rapid growth and concerted sexual transitions by a bloom of the harmful dinoflagellate Alexandrium fundyense (Dinophyceae). Limnol Oceanogr 60:2059–2078CrossRefPubMedPubMedCentralGoogle Scholar
  14. Burkholder JM, Glibert P (2009) The importance of intraspecific variability in harmful algae—preface to a collection of topical papers. Harmful Algae 8:744–745CrossRefGoogle Scholar
  15. Burkholder JM, Shumway SE (2011) Bivalve shellfish aquaculture and eutrophication. In: Shumway SE (ed) Shellfish and the environment. Wiley, New York, pp 155–215CrossRefGoogle Scholar
  16. Busch JA, Andree KA, Diogène J et al (2017) Spatio-temporal patchiness of harmful phytoplankton in comparative environmental regimes of two coastal embayments in the Ebro Delta (NW Mediterranean). Mar Ecol Prog Ser (in press)Google Scholar
  17. Cembella AD (2003) Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia 42:420–447CrossRefGoogle Scholar
  18. Cembella AD, Ibarra DA, Diogene J et al (2005) Harmful algal blooms and their assessment in fjords and coastal embayments. Oceanography 18(2):158–171CrossRefGoogle Scholar
  19. Cembella A, Zielinski O, Anderson D, Graeve M et al (2016) ARCHEMHAB: interactions and feedback mechanisms between hydrography, geochemical signatures and microbial ecology, with a focus on HAB species diversity, biogeography and dynamics. Cruise Report MSM21/3, DFG-Senatskommission für Ozeanographie, Bremen, GermanyGoogle Scholar
  20. Chambouvet A, Morin P, Marie D et al (2008) Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322:1254–1257CrossRefPubMedGoogle Scholar
  21. Collos Y, Jauzein C, Ratmaya W et al (2014) Comparing diatom and Alexandrium catenella/tamarense blooms in Thau lagoon: importance of dissolved organic nitrogen in seasonally N-limited systems. Harmful Algae 37:84–91CrossRefGoogle Scholar
  22. Cosgrove S, Ní Rathaille A, Raine R (2014) The influence of bloom intensity on the encystment rate and persistence of Alexandrium minutum in Cork Harbor, Ireland. Harmful Algae 31:114–124CrossRefPubMedGoogle Scholar
  23. D’Alelio D, Ribera D’Alcalà M, Dubroca L et al (2010) The time for sex: a biennial life cycle in a marine planktonic diatom. Limnol Oceanogr 55:106–114CrossRefGoogle Scholar
  24. Dale B, Murphy M (2014) A retrospective appraisal of the importance of high-resolution sampling for harmful algal blooms: lessons from long-term phytoplankton monitoring at Sherkin Island, S.W. Ireland. Harmful Algae 40:23–33CrossRefGoogle Scholar
  25. Davidson K, Gowen RJ, Harrison PJ et al (2014) Anthropogenic nutrients and harmful algae in coastal waters. J Environ Manag 146:206–216CrossRefGoogle Scholar
  26. Davidson K, Gowen RJ, Tett P et al (2012) Harmful algal blooms: How strong is the evidence that nutrient ratios and forms influence their occurrence? Estuar Coast Shelf Sci 115:399–413.  https://doi.org/10.1016/j.ecss.2012.09.019CrossRefGoogle Scholar
  27. Díaz P, Molinet C, Caceres MA et al (2011) Seasonal and intratidal distribution of Dinophysis spp. in a Chilean fjord. Harmful Algae 10:155–164.  https://doi.org/10.1016/j.hal.2010.09.001CrossRefGoogle Scholar
  28. Erdner DL, Percy L, Keafer B et al (2010) A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments. Deep Sea Res II 57(3–4):279–287CrossRefGoogle Scholar
  29. Estrada M, Solé J, Anglès S et al (2010) The role of resting cysts in Alexandrium minutum population dynamics. Deep Sea Res II 57(3–4):308–321CrossRefGoogle Scholar
  30. Figueroa RI, Bravo I, Garcés E (2006) The multiple routes of sexuality in Alexandrium taylori (Dinophyceae) in culture. J Phycol 42:1028–1039CrossRefGoogle Scholar
  31. Flynn KJ, Mitra A, Glibert PM et al (2018) Mixotrophy in HABs: by whom, on whom, when, why, and what next. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 113–132CrossRefGoogle Scholar
  32. Flynn KJ, Stoecker DK, Mitra A et al (2013) Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J Plankton Res 35(1):3–11.  https://doi.org/10.1093/plankt/fbs062CrossRefGoogle Scholar
  33. Fu FX, Tatters AO, Hutchins DA (2012) Global change and the future of harmful algal blooms in the ocean. Mar Ecol Prog Ser 470:207–233.  https://doi.org/10.3354/meps10047CrossRefGoogle Scholar
  34. Garcés E, Camp J (2012) Habitat changes in the Mediterranean Sea and the consequences for harmful algal blooms formation. In: Stambler N (ed) Life in the Mediterranean Sea: a look at habitat changes. Nova Science Publishers Inc., pp 519–541Google Scholar
  35. Garcés E, Montresor M, Lewis J et al (2010) Phytoplankton life cycles and their impacts on the ecology of harmful algal blooms. Deep Sea Res II 57:159–161CrossRefGoogle Scholar
  36. GEOHAB (2010) Global ecology and oceanography of harmful algal blooms, GEOHAB core research project: HABs in fjords and coastal embayments. Cembella A, Guzmán L, Roy S, et al (eds) IOC and SCOR, Paris, France, and Newark, Delaware, 57 ppGoogle Scholar
  37. GEOHAB (2013) Global ecology and oceanography of harmful algal blooms, GEOHAB core research project: HABs in fjords and coastal embayments, second open science meeting. Roy S, Pospelova V, Montresor M et al (eds) IOC and SCOR, Paris, France and Newark, Delaware USA, 52 ppGoogle Scholar
  38. Glibert PM, Al-Azri A, Allen JI et al (2018a) Key questions and recent research advances on harmful algal blooms in relation to nutrients and eutrophication. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 229–259CrossRefGoogle Scholar
  39. Glibert PM, Beusen AHW, Harrison JA et al (2018b) Changing land, sea- and airscapes: sources of nutrient pollution affecting habitat suitability for harmful algae. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 53–76CrossRefGoogle Scholar
  40. Glibert PM, Boyer J, Heil C et al (2010) Blooms in lagoons: different from those of river-dominated estuaries. In: Kennish M, Paerl H (eds) Coastal lagoons: critical habitats of environmental change. Taylor and Francis, pp 91–114CrossRefGoogle Scholar
  41. Glibert PM, Burford MA (2017) Globally changing nutrient loads and harmful algal blooms. Oceanography 30:44–55CrossRefGoogle Scholar
  42. Glibert PM, Kana TM, Brown K (2013) From limitation to excess: the consequences of substrate excess and stoichiometry for phytoplankton physiology, trophodynamics and biogeochemistry, and the implications for modeling. J Mar Syst 125:14–28CrossRefGoogle Scholar
  43. Gobler CJ, Berry DL, Dyhrman ST et al (2011) Niche of harmful algal Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci USA 108:4352–4357.  https://doi.org/10.1073/pnas.1016106108CrossRefPubMedPubMedCentralGoogle Scholar
  44. Godhe A, Härnström K (2010) Linking the planktonic and benthic habitat: genetic structure of the marine diatom Skeletonema marinoi. Mol Ecol 19:4478–4490CrossRefPubMedGoogle Scholar
  45. Hallegraeff GM (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 46:220–235.  https://doi.org/10.1111/j.1529-8817.2010.00815.xCrossRefGoogle Scholar
  46. Hamasaki K, Horie M, Tokimitsu S et al (2001) Variability in toxicity of the dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, western Japan, as a reflection of changing environmental conditions. J Plankton Res 23:271–278.  https://doi.org/10.1093/plankt/23.3.271CrossRefGoogle Scholar
  47. Härnström K, Ellegaard M, Andersen TJ et al (2011) Hundred years of genetic structure in a sediment revived diatom population. Proc Natl Acad Sci USA 108:4252–4257CrossRefPubMedGoogle Scholar
  48. Harvey EL, Menden-Deuer S, Rynearson TA (2015) Persistent intra-specific variation in genetic and behavioral traits in the raphidophyte, Heterosigma akashiwo. Front Microbiol 6:1277.  https://doi.org/10.3389/fmicb.2015.01277CrossRefPubMedPubMedCentralGoogle Scholar
  49. John U, Litaker W, Montresor M et al (2014) Formal revision of the Alexandrium tamarense species complex (Dinophyceae) taxonomy: the introduction of five species with emphasis on molecular-based (rDNA) classification. Protist 165:779–804CrossRefPubMedPubMedCentralGoogle Scholar
  50. Johnsen TM, Eikrem W, Olseng CD et al (2010) Prymnesium parvum: the Norwegian experience. JAWRA 46(1):6–13.  https://doi.org/10.1111/j.1752-1688.2009.00386.xCrossRefGoogle Scholar
  51. Jones SE, Lennon JT (2010) Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci USA 107:5881–5886CrossRefPubMedGoogle Scholar
  52. Lucas AJ, Largier JL (2013) The influence of physical variability on HAB patterns and persistence in bays. In: GEOHAB, Roy S, Pospelova V, Montresor M, Cembella A (eds) Global ecology and oceanography of harmful algal blooms, GEOHAB Core Research Project: HABs in fjords and coastal embayments. Second open science meeting: progress in interpreting life history and growth dynamics of harmful algal blooms in fjords and coastal environments. Intergovernmental Oceanographic Commission and Scientific Committee on Oceanic Research, Paris and Newark, DE, pp 50–51 (abstract only)Google Scholar
  53. Lucas AJ, Dupont CL, Tai V et al (2011) The green ribbon: multiscale physical control of phyto plankton productivity and community structure over a narrow continental shelf. Limnol Oceanogr 56:611–626.  https://doi.org/10.4319/lo.2011.56.2.0611CrossRefGoogle Scholar
  54. Lundholm N, Clarke A, Ellegaard M (2010) A 100-year record of changing Pseudo-nitzschia species in a sill-fjord in Denmark related to nitrogen loading and temperature. Harmful Algae 9:449–457.  https://doi.org/10.1016/j.hal.2010.03.001CrossRefGoogle Scholar
  55. McGillicuddy DJ Jr, Anderson DM, Lynch DR et al (2005) Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the Gulf of Maine: results from a physical-biological model. Deep Sea Res II 52:2698–2714CrossRefGoogle Scholar
  56. McGillicuddy DJ, Townsend DW, Keafer BA et al (2014) Georges Bank: a leaky incubator of Alexandrium fundyense blooms. Deep Sea Res II 103:163–173CrossRefGoogle Scholar
  57. Penna A, Battocchi C, Garcés E et al (2010) Detection of microalgal resting cysts in European coastal sediments using a PCR-based assay. Deep Sea Res II 57(3–4):288–300CrossRefGoogle Scholar
  58. Persson A, Smith BC, Wikfors GH et al (2013) Differences in swimming pattern between life cycle stages of the toxic dinoflagellate Alexandrium fundyense. Harmful Algae 21–22:36–43CrossRefGoogle Scholar
  59. Pilskaln CH, Hayashi K, Keafer BA et al (2014) Benthic nepheloid layers in the Gulf of Maine and Alexandrium cyst inventories. Deep Sea Res II 103:55–65CrossRefGoogle Scholar
  60. Raine R, Berdalet E, Yamazaki H et al (2018) Key questions and recent research advances on harmful algal blooms in stratified systems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 165–186CrossRefGoogle Scholar
  61. Raine R, McDermott G, Silke J et al (2010) A simple short range model for the prediction of harmful algal events in the bays of southwestern Ireland. J Mar Syst 83:150–157.  https://doi.org/10.1016/j.jmarsys.2010.05.001CrossRefGoogle Scholar
  62. Richlen ML, Erdner DL, McCauley LAR et al (2012) Extensive genetic diversity and rapid popu lation differentiation during blooms of Alexandrium fundyense (Dinophyceae) in an isolated salt pond on Cape Cod, MA, USA. Ecol Evol 2(10):2583–2594CrossRefGoogle Scholar
  63. Roy S, Parenteau M, Casas-Monroy O et al (2012) Coastal ship traffic: a significant introduction vector for potentially harmful dinoflagellates in eastern Canada. Can J Fish Aquat Sci 69:627–644CrossRefGoogle Scholar
  64. Ryan JP, McManus MA, Sullivan JM (2010) Interacting physical, chemical and biological forcing of phytoplankton thin-layer variability in Monterey Bay, California. Cont Shelf Res 30:7–16.  https://doi.org/10.1016/j.csr.2009.10.017CrossRefGoogle Scholar
  65. Sekula-Wood E, Benitez-Nelson C, Morton S et al (2011) Pseudo-nitzschia and domoic acid fluxes in Santa Barbara Basin (CA) from 1993 to 2008. Harmful Algae 10:567–575.  https://doi.org/10.1016/j.hal.2011.04.009CrossRefGoogle Scholar
  66. Shull DH, Kremp A, Mayer LM (2014) Bioturbation, germination and deposition of Alexandrium fundyense cysts in the Gulf of Maine. Deep Sea Res II 103:66–78CrossRefGoogle Scholar
  67. Skovgaard A, Hansen PJ (2003) Food uptake in the harmful alga Prymnesium parvum mediated by excreted toxins. Limnol Oceanogr 48:1161–1166CrossRefGoogle Scholar
  68. Smayda TJ (2007) Reflections on the ballast water dispersal-harmful algal bloom paradigm. Harmful Algae 6:601–622CrossRefGoogle Scholar
  69. Smayda TJ, Trainer VL (2010) Dinoflagellate blooms in upwelling systems: seeding, variability, and contrasts with diatom bloom behaviour. Prog Oceanogr 85:92–107.  https://doi.org/10.1016/j.pocean.2010.02.006CrossRefGoogle Scholar
  70. Tobin ED, Grünbaum D, Patterson J et al (2013) Behavioral and physiological changes during benthic-pelagic transition in the harmful alga, Heterosigma akashiwo: potential for rapid bloom formation. PLoS One 8(10):e76663.  https://doi.org/10.1371/journal.pone.0076663CrossRefPubMedPubMedCentralGoogle Scholar
  71. Varela D, Paredes J, Alves-de-Souza C et al (2012) Intraregional variation among Alexandrium catenella (Dinophyceae) strains from southern Chile: morphological, toxicological and genetic diversity. Harmful Algae 15:8–18.  https://doi.org/10.1016/j.hal.2011.10.029CrossRefGoogle Scholar
  72. Velo-Suárez L, Brosnahan ML, Anderson DM et al (2013) A quantitative assessment of the role of the parasite Amoebophrya in the termination of Alexandrium fundyense blooms within a small coastal embayment. PLoS One 8(12):e81150.  https://doi.org/10.1371/journal.pone.0081150CrossRefPubMedPubMedCentralGoogle Scholar
  73. Walsh JJ, Dieterle DA, Chen FR et al (2011) Trophic cascades and future harmful algal blooms within ice-free Arctic Seas north of Bering Strait: a simulation analysis. Prog Oceanogr 91(3):312–343.  https://doi.org/10.1016/j.pocean.2011.02.001CrossRefGoogle Scholar
  74. Warns A, Hense I, Kremp A (2012) Modelling the life cycle of dinoflagellates: a case study with Biecheleria baltica. J Plankton Res 35(2):379–392.  https://doi.org/10.1093/plankt/fbs095CrossRefGoogle Scholar
  75. Wells ML, Karlson B (2018) Harmful algal blooms in a changing ocean. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 77–90CrossRefGoogle Scholar
  76. Wells ML, Trainer VL, Smayda TJ et al (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wohlrab S, Iversen MH, John U (2010) A molecular and co-evolutionary context for grazer induced toxin production in Alexandrium tamarense. PLoS One 5(11):e15039.  https://doi.org/10.1371/journal.pone.0015039CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut des Sciences de la MerUniversité du Québec à RimouskiRimouskiCanada
  2. 2.Stazione Zoologica Anton DohrnNapoliItaly
  3. 3.Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und MeeresforschungBremerhavenGermany

Personalised recommendations