Advertisement

The OntoREA© Accounting and Finance Model: Ontological Conceptualization of the Accounting and Finance Domain

  • Christian Fischer-Pauzenberger
  • Walter S. A. Schwaiger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10650)

Abstract

Geerts and McCarthy [1, 2] extended McCarthy’s [3] Resource-Event-Agent (REA) accounting model with a forward-looking perspective by including commitments and economic contracts. Schwaiger [4] investigated the extended REA accounting model with respect to accounting and finance requirements and developed the REA-based Asset-Liability-Equity (ALE) accounting model. Due to the ontological neutrality of UML class diagrams [5], financial instruments are not concisely conceptualized. This holds true especially for derivative instruments which have very special temporal modal and identity-related peculiarities. For modeling them the OntoUML language developed by Guizzardi [6] provides a solid foundation. In this article ontological meta-properties of OntoUML are used to specify these peculiarities and to derive the OntoREA© Accounting and Finance Model, which constitutes a valid ontology-based conceptualization of the accounting and finance domain. This model should be beneficial especially for business analysts who have to understand and develop conceptual models for up-to-date enterprise and accounting information systems.

Keywords

Accounting Finance REA accounting model OntoUML Unified Foundational Ontology Ontology-driven conceptual modeling Design patterns 

References

  1. 1.
    Geerts, G.L., McCarthy, W.E.: An ontological analysis of the economic primitives of the extended-REA enterprise information architecture. Int. J. Account. Inf. Syst. 3, 1–16 (2002)CrossRefGoogle Scholar
  2. 2.
    Geerts, G.L., McCarthy, W.E.: Policy level specifications in REA enterprise information systems. J. Inf. Syst. 20, 37–63 (2006)Google Scholar
  3. 3.
    McCarthy, W.E.: The REA accounting model: a generalized framework for accounting systems in a shared data environment. Account. Rev. 554–578 (1982)Google Scholar
  4. 4.
    Schwaiger, W.S.A.: The REA accounting model: enhancing understandability and applicability. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 566–573. Springer, Cham (2015). doi: 10.1007/978-3-319-25264-3_43CrossRefGoogle Scholar
  5. 5.
    Karlsson, F., Linander, F., von Schéele, F.: A conceptual framework for time distortion analysis in method components. In: Bider, I., Gaaloul, K., Krogstie, J., Nurcan, S., Proper, H.A., Schmidt, R., Soffer, P. (eds.) BPMDS/EMMSAD-2014. LNBIP, vol. 175, pp. 454–463. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-43745-2_31CrossRefGoogle Scholar
  6. 6.
    Guizzardi, G.: Ontological foundations for structural conceptual model. http://doc.utwente.nl/50826 (2005)
  7. 7.
    Standardization/International, E.C.I.O. for: Information Technology—Business Operational View—Part 4: Business Transactions Scenarios—Accounting and Economic Ontology. ISO/IEC FDIS. 15944 (2007)Google Scholar
  8. 8.
    Gailly, F., Geerts, G., Poels, G.: Ontological reengineering of the REA-EO using UFO. In: OOPSLA Workshop on Ontological Software Engineering (2009)Google Scholar
  9. 9.
    Fischer-Pauzenberger, C., Schwaiger, W.S.A.: The OntoREA accounting model: ontology-based modeling of the accounting domain. Complex Syst. Inform. Model. Q. 54, 20–37 (2017)CrossRefGoogle Scholar
  10. 10.
    Guizzardi, G., Das Graças, A.P., Guizzardi, R.S.S.: Design patterns and inductive modeling rules to support the construction of ontologically well-founded conceptual models in OntoUML. In: Salinesi, C., Pastor, O. (eds.) CAiSE 2011. LNBIP, vol. 83, pp. 402–413. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22056-2_44CrossRefGoogle Scholar
  11. 11.
    Verdonck, M., Gailly, F., De Cesare, S., Poels, G.: Ontology-driven conceptual modeling: a systematic literature mapping and review. Appl. Ontol. 10, 197–227 (2015)CrossRefGoogle Scholar
  12. 12.
    Horngren, C., Harrison, W., Oliver, S., Best, P., Fraser, D., Tan, R., Willett, R.: Accounting. Pearson Higher Education AU, New York (2012)Google Scholar
  13. 13.
    Hull, J.C.: Options, Futures, and Other Derivatives. Pearson Education, London (2009)zbMATHGoogle Scholar
  14. 14.
    Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks/Cole Publishing, Pacific Grove (2000)Google Scholar
  15. 15.
    Lowe, E.J.: The Four-Category Ontology: A Metaphysical Foundation for Natural Science. Oxford University Press (2006)Google Scholar
  16. 16.
    Sales, T.P.: Ontology Validation for Managers (2014)Google Scholar
  17. 17.
    Ruy, F.B., Reginato, C.C., Santos, V.A., Falbo, R.A., Guizzardi, G.: Ontology engineering by combining ontology patterns. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 173–186. Springer, Cham (2015). doi: 10.1007/978-3-319-25264-3_13CrossRefGoogle Scholar
  18. 18.
    Guizzardi, G., Wagner, G., Almeida, J.P.A., Guizzardi, R.S.S.: Towards ontological foundations for conceptual modeling: the unified foundational ontology (UFO) story. Appl. Ontol. 10, 259–271 (2015)CrossRefGoogle Scholar
  19. 19.
    Rybola, Z., Pergl, R.: Towards OntoUML for software engineering: introduction to the transformation of OntoUML into relational databases. In: Pergl, R., Molhanec, M., Babkin, E., Fosso Wamba, S. (eds.) EOMAS 2016. LNBIP, vol. 272, pp. 67–83. Springer, Cham (2016). doi: 10.1007/978-3-319-49454-8_5CrossRefGoogle Scholar
  20. 20.
    Sales, T., Barcelos, P., Guizzardi, G.: Identification of semantic anti-patterns in ontology-driven conceptual modeling via visual simulation. In: 4th International Workshop on Ontology Information System (ODISE 2012), Graz, Austria (2012)Google Scholar
  21. 21.
    Ontology Project: UFO-A Specification. http://ontology.com.br/ufo-a/spec/
  22. 22.
  23. 23.
    Merton, R.C.: Theory of rational theory option pricing. Bell J. Econ. 4, 141–183 (1973)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637 (1973)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: a simplified approach. J. Financ. Econ. 7, 229–263 (1979)CrossRefGoogle Scholar
  26. 26.
    Romney, M., Steinbart, P., Mula, J., McNamara, R., Tonkin, T.: Accounting Information Systems. Pearson Higher Education AU, New York (2012)Google Scholar
  27. 27.
    Dunn, C.L., Hollander, A.S., Cherrington, J.O.: Enterprise Information Systems: A Pattern-Based Approach. McGraw-Hill/Irwin, New York (2005)Google Scholar
  28. 28.
    Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in practice. Synth. Lect. Softw. Eng. 1(1), 1–182 (2012)CrossRefGoogle Scholar
  29. 29.
    Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software Development: Technology, Engineering, Management. Wiley, Hoboken (2013)Google Scholar
  30. 30.
    Pergl, R., Sales, T.P., Rybola, Z.: Towards OntoUML for software engineering: from domain ontology to implementation model. In: Cuzzocrea, A., Maabout, S. (eds.) MEDI 2013. LNCS, vol. 8216, pp. 249–263. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41366-7_21CrossRefGoogle Scholar
  31. 31.
    Guizzardi, G., Guarino, N., Almeida, J.P.A.: Ontological considerations about the representation of events and endurants in business models, pp. 1–16 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christian Fischer-Pauzenberger
    • 1
  • Walter S. A. Schwaiger
    • 1
  1. 1.Institute of Management Science – TU WienViennaAustria

Personalised recommendations