Advertisement

Data, Control, and Process Flow Modeling for IoT Driven Smart Solutions

  • P. Radha Krishna
  • Kamalakar Karlapalem
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10650)

Abstract

Internet of Things (IoT) technologies advance physical objects capabilities regarding programmable, sensor-based and connected. Today’s smart applications leverage IoT technologies that enable collaboration between different entities involved in the application. Further, smart applications provide local intelligence attached each device/physical object. The nature of an IoT application usually differs from time-to-time due to varied context and end-device sensing/response. The key issue is that of understanding the data and control flows which govern the processes that act on the sensed data all the way up to end user application. So, conceptually modeling of data, control and process flow for IoT-driven smart applications is more challenging, especially when further modeling the context and exceptions arise during the execution. In this paper, we discuss an architectural framework for IoT-driven smart applications that facilitate monitoring and managing data, control and process flows. We provide a vertically and horizontally integrated enactment of data modeling for smart solutions.

Keywords

IoT devices Modeling Workflows Context 

References

  1. 1.
    Beer, T., Rasinger, J., Höpken, W., Fuchs, M., Werthner, H.: Exploiting E-C-a rules for defining and processing context-aware push messages. In: Paschke, A., Biletskiy, Y. (eds.) RuleML 2007. LNCS, vol. 4824, pp. 199–206. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75975-1_19CrossRefGoogle Scholar
  2. 2.
    Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.-K.: Composite events for active databases: semantics, contexts and detection. In: Proceedings of the 20th VLDB Conference Santiago, pp. 606–617 (1994)Google Scholar
  3. 3.
    Chen, M.: Towards smart city: M2M communications with software agent intelligence. Multimed. Tools Appl. 67, 167–178 (2013)CrossRefGoogle Scholar
  4. 4.
    Gaur, A., Scotney, B., Parr, G., McClean, S.: Smart city architecture and its applications based on IoT. Procedia Comput. Sci. 52, 1089–1094 (2015). 5th International Symposium on Internet of Ubiquitous and Pervasive Things (IUPT 2015)CrossRefGoogle Scholar
  5. 5.
    Jain, H., Radha Krishna, P., Karlapalem, K.: Context-aware workflow execution engine for e-contract enactment. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 293–301. Springer, Cham (2016). doi: 10.1007/978-3-319-46397-1_23CrossRefGoogle Scholar
  6. 6.
    Krishna, P.R., Karlapalem, K.: A methodology for evolving e-contracts using templates. IEEE Trans. Serv. Comput. 6(4), 497–510 (2013)CrossRefGoogle Scholar
  7. 7.
    Mervat, A., Mohammad, H., Najah, A.: Data management for the internet of things: design primitives and solution. Sensors 13, 15582–15612 (2013)CrossRefGoogle Scholar
  8. 8.
    Robles, T., Alcarria, R., Martín, D., Navarro, M., Calero, R., Iglesias, S., López, M.: An IoT based reference architecture for smart water management processes. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. 6(1), 4–23 (2015)Google Scholar
  9. 9.
    Tanaka, A.K., Navathe, S.B., Chakravarthy, S. Karlapalem, K.: ER-R: an enhanced ER model with situation-action rules to capture application semantics. In: Proceedings of International Conference on Conceptual Modeling (ER 1991), pp. 59–75 (1991)Google Scholar
  10. 10.
    Zambonelli, F.: Key abstractions for IoT-oriented software egnieering. IEEE Softw. 34(1), 38–45 (2017)CrossRefGoogle Scholar
  11. 11.
    Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    The Constrained Application Protocol (CoAP) Specification RFC7252. https://tools.ietf.org/html/rfc7252

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Infosys LimitedHyderabadIndia
  2. 2.Data Sciences and Analytics CentreIIIT-HyderabadHyderabadIndia

Personalised recommendations