Introduction

Chapter

Abstract

The development of surgical implants has a long history. Over 4500 years ago, the ancient Egyptians were already using gold ligature wires to stabilize teeth. Archeological studies have revealed the skills of Mayas in sophisticated dentistry and the use of shells for dental implants. Modern dental implants thrived from the 1960s as the choices of materials, structural design, surface finish, and coating become more versatile. Today, the new implants developed allow not only seamless structural support but also tissue integration, with sophisticated functional coatings to combat infection and promote bone regeneration. In this chapter, the main contents covered by this book are summarized, which include electrochemical sensor designs, electrical and physical sensors, sensor embodiment and flexible electronics, ultra-low-power Application Specific Integrated Circuits (ASICs), optical sensors, power harvesting, and data exchange links, as well as wireless data paths and security.

References

  1. 1.
    C.M. Abraham, A brief historical perspective on dental implants, their surface coatings and treatments. Open Dent. J. 8(Suppl 1–M2), 50–55 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Barg, M.D. Wimmer, M. Wiewiorski, D.C. Wirtz, G.I. Pagenstert, V. Valderrabano, Total ankle replacement—indications, implant designs, and results. Dtsch Arztebl Int 112, 177–184 (2015)Google Scholar
  3. 3.
    R. Coello, A. Charlett, J. Wilson, V. Ward, A. Pearson, P. Borriello, adverse impact of surgical site infections in english hospitals. J. Hosp. Infect. 60(2), 93–103 (2005)CrossRefGoogle Scholar
  4. 4.
    Weltin, B. Enderle, J. Kieninger, G.A. Urban, Multiparametric, flexible microsensor platform for metabolic monitoring. IEEE Sens. J. 14(10), 3345–3351 (2014)CrossRefGoogle Scholar
  5. 5.
    E. Lindner, R. Buck, Microfabricated potentiometric electrodes and their in vivo applications. Anal. Chem. 72(9), 336A–345A (2000)CrossRefGoogle Scholar
  6. 6.
    M.M. Ahmadi, G.A. Jullien, A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Trans. Biomed. Circuits Syst. 3(3), 169–180 (2009)CrossRefGoogle Scholar
  7. 7.
    P. Cong, N. Chaimanonart, W.H. Ko, D.J. Young, A wireless and batteryless 10-bit implantable blood pressure sensing microsystem with adaptive RF Powering for real-time laboratory mice monitoring. IEEE J. Solid State Circuits 44(12), 3631–3644 (2009)CrossRefGoogle Scholar
  8. 8.
    N.J. Cleven et al., A novel fully implantable wireless sensor system for monitoring hypertension patients. IEEE Trans. Biomed. Eng. 59(11), 3124–3130 (2012)CrossRefGoogle Scholar
  9. 9.
    T. Yokota, P. Zalar, M. Kaltenbrunner et al., Ultraflexible organic photonic skin. Sci. Adv. 2(4), e1501856 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Viventi, D.H. Kim, L. Vigeland et al., Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14(12), 1599–1605 (2011)CrossRefGoogle Scholar
  11. 11.
    C.M. Lopez, A. Andrei, S. Mitra et al., An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J. Solid State Circuits 49(1), 248–261 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Monge, M. Raj, M.H. Nazari, H.C. Chang, Y. Zhao, J.D. Weiland, M.S. Humayun, Y.C. Tai, A. Emami, A fully intraocular high-density self-calibrating epiretinal prosthesis. IEEE Trans. Biomed. Circuits Syst. 7(6), 747–760 (2013)CrossRefGoogle Scholar
  13. 13.
    R. Kiesslich, M. Goetz, K. Lammersdorf, C. Schneider, J. Burg, M. Stolte, M. Vieth, B. Nafe, P.R. Galle, M.F. Neurath, Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterology 132(3), 874–882 (2007)CrossRefGoogle Scholar
  14. 14.
    M.J. Gora, J.S. Sauk, R.W. Carruth, K.A. Gallagher, M.J. Suter, N.S. Nishioka, L.E. Kava, M. Rosenberg, B.E. Bouma, G.J. Tearney, Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat. Med. 19(2), 238–240 (2013)CrossRefGoogle Scholar
  15. 15.
    J. Wang, F. Wagner, D.A. Borton, J.Y. Zhang, I. Ozden, R.D. Burwell, A.V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J. Neural Eng. 9(1), 016001 (2012).  https://doi.org/10.1088/1741-2560/9/1/016001
  16. 16.
    K. Stingl, K.U. Bartz-Schmidt, D. Besch, A. Braun, A. Bruckmann, F. Gekeler, U. Greppmaier, S. Hipp, G. Hortdorfer, C. Kernstock, A. Koitschev, A. Kusnyerik, H. Sachs, A. Schatz, K.T. Stingl, T. Peters, B. Wilhelm, E. Zrenner, Artificial vision with wirelessly powered subretinal electronic implant alpha-ims. Proc. Royal Soc. B 280(1757), 20130077 (2013)CrossRefGoogle Scholar
  17. 17.
    P.P. Mercier, A.C. Lysaght, S. Bandyopadhyay, A.P. Chandrakasan, K.M. Stankovic, Energy extraction from the biologic battery in the inner ear. Nat. Biotechnol. 30(12), 1240–1243 (2012)CrossRefGoogle Scholar
  18. 18.
    D.D. Karnaushenko, D. Karnaushenko, D. Makarov, O.G. Schmidt, Compact helical antenna for smart implant applications. Nat. Publ. Group Asia Mater. 7, e188 (2015)Google Scholar
  19. 19.
    K. Okabe, I. Akita, S. Yamagiwa, T. Kawano, M. Ishida, A thin film flexible antenna with CMOS rectifier chip for RF-powered Implantable neural interfaces, in International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (2015)Google Scholar
  20. 20.
    D. Seo, J.M. Carmena, J.M. Rabaey, E. Alon, M.M. Maharbiz, Neural dust: an ultrasonic, low power solution for chronic brain–machine interfaces. arXiv:1307.2196 [q-bio.NC] (2013)
  21. 21.
    E.Y. Chow, A.L. Chlebowski, S. Chakraborty, W.J. Chappell, P.P. Irazoqui, Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans. Biomed. Eng. 57(6), 1487–1496 (2010)CrossRefGoogle Scholar
  22. 22.
    M. Zhang, A. Raghunathan, N.K. Jha, Trustworthiness of medical devices and body area networks. Proc. IEEE 102(8), 1174–1188 (2014)CrossRefGoogle Scholar
  23. 23.
    G. Zheng, G. Fang, M.A. Orgun, R. Shankaran, A non-key based security scheme supporting emergency treatment of wireless implants, in IEEE ICC Symposium on Communication and Information Systems Security (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Hamlyn CentreImperial College LondonLondonUK

Personalised recommendations