Advertisement

Autonomic Dysfunction in Shock

  • Gareth L. AcklandEmail author
Chapter
  • 1.4k Downloads
Part of the Lessons from the ICU book series (LEICU)

Abstract

Circulatory shock is accompanied, and likely to be preceded, by profound alterations in autonomic function. In stable conditions, sympathetic and parasympathetic limbs of the autonomic nervous system work in a highly coordinated manner, by virtue of physical and biochemical afferent signals being transduced into coordinated neural activity to maintain homeostasis in multiple organs innervated by specialized autonomic nerves. In this chapter, we assess how normal autonomic activity is regulated and the practical implications of how perturbation of the autonomic nervous system fuels further detrimental changes in shock. We will also highlight how autonomic regulation of cardiovascular and extra-cardiovascular physiology contributes to circulatory shock and define autonomic dysfunction practically in a clinical context.

References

  1. 1.
    Paton JF, Boscan P, Pickering AE, Nalivaiko E. The yin and yang of cardiac autonomic control: Vago-sympathetic interactions revisited. Brain Res Brain Res Rev. 2005;49(3):555–65.CrossRefGoogle Scholar
  2. 2.
    Machhada A, Marina N, Korsak A, Stuckey DJ, Lythgoe MF, Gourine AV. Origins of the vagal drive controlling left ventricular contractility. J Physiol. 2016;594(14):4017–30.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Machhada A, Trapp S, Marina N, Stephens RCM, Whittle J, Lythgoe MF, et al. Vagal determinants of exercise capacity. Nat Commun. 2017;8:15097.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wehrwein EA, Joyner MJ. Regulation of blood pressure by the arterial baroreflex and autonomic nervous system. Handb Clin Neurol. 2013;117:89–102.CrossRefPubMedGoogle Scholar
  5. 5.
    Toner A, Jenkins N, Ackland GL, POM-O Study Investigators. Baroreflex impairment and morbidity after major surgery. Br J Anaesth. 2016;117(3):324–31.CrossRefPubMedGoogle Scholar
  6. 6.
    Sharshar T, Gray F, de la Grandmaison GL, Hopklnson NS, Ross E, Dorandeu A, et al. Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet. 2003;362(9398):1799–805.Google Scholar
  7. 7.
    Kara T, Narkiewicz K, Somers VK. Chemoreflexes – physiology and clinical implications. Acta Physiol Scand. 2003;177(3):377–84.CrossRefPubMedGoogle Scholar
  8. 8.
    Toledo C, Andrade DC, Lucero C, Schultz HD, Marcus N, Retamal M, et al. Contribution of peripheral and central chemoreceptors to sympatho-excitation in heart failure. J Physiol. 2017;595(1):43–51.CrossRefPubMedGoogle Scholar
  9. 9.
    Querido JS, Wehrwein EA, Hart EC, Charkoudian N, Henderson WR, Sheel AW. Baroreflex control of muscle sympathetic nerve activity as a mechanism for persistent sympathoexcitation following acute hypoxia in humans. Am J Physiol Regul Integr Comp Physiol. 2011;301(6):R1779–85.CrossRefPubMedGoogle Scholar
  10. 10.
    Ackland GL, Kazymov V, Marina N, Singer M, Gourine AV. Peripheral neural detection of danger-associated and pathogen-associated molecular patterns. Crit Care Med. 2013;41(6):e85–92.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schmidt H, Muller-Werdan U, Nuding S, Hoffmann T, Francis DP, Hoyer D, et al. Impaired chemoreflex sensitivity in adult patients with multiple organ dysfunction syndrome – the potential role of disease severity. Intensive Care Med. 2004;30(4):665–72.CrossRefPubMedGoogle Scholar
  13. 13.
    Schmidt H, Müller-Werdan U, Hoffmann T, Francis DP, Piepoli MF, Rauchhaus M, et al. Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups*. Crit Care Med. 2005;33(9):1994–2002.CrossRefPubMedGoogle Scholar
  14. 14.
    Ernst G. Heart-rate variability-more than heart beats? Front Public Health. 2017;5:240.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Thayer JF, Lane RD. The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol. 2007;74(2):224–42.CrossRefPubMedGoogle Scholar
  16. 16.
    Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52(4):595–638.Google Scholar
  17. 17.
    Andersson U, Tracey KJ. Reflex principles of immunological homeostasis. Annu Rev Immunol. 2012;30:313–35.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Neukirchen M, Kienbaum P. Sympathetic nervous system: evaluation and importance for clinical general anesthesia. Anesthesiology. 2008;109(6):1113–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Wolthuis RA, Bergman SA, Nicogossian AE. Physiological effects of locally applied reduced pressure in man. Physiol Rev. 1974;54(3):566–95.CrossRefPubMedGoogle Scholar
  20. 20.
    van de Borne P, Montano N, Pagani M, Oren R, Somers VK. Absence of low-frequency variability of sympathetic nerve activity in severe heart failure. Circulation. 1997;95(6):1449–54.CrossRefPubMedGoogle Scholar
  21. 21.
    Chan JY, Ou CC, Wang LL, Chan SH. Heat shock protein 70 confers cardiovascular protection during endotoxemia via inhibition of nuclear factor-kappaB activation and inducible nitric oxide synthase expression in the rostral ventrolateral medulla. Circulation. 2004;110(23):3560–6.CrossRefPubMedGoogle Scholar
  22. 22.
    de Montmollin E, Aboab J, Mansart A, Annane D. Bench-to-bedside review: Beta-adrenergic modulation in sepsis. Crit Care. 2009;13(5):230.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ninomiya I, Nisimaru N, Irisawa H. Sympathetic nerve activity to the spleen, kidney, and heart in response to baroceptor input. Am J Phys. 1971;221(5):1346–51.CrossRefGoogle Scholar
  24. 24.
    Floras JS, Butler GC, Ando SI, Brooks SC, Pollard MJ, Picton P. Differential sympathetic nerve and heart rate spectral effects of nonhypotensive lower body negative pressure. Am J Physiol Regul Integr Comp Physiol. 2001;281(2):R468–75.CrossRefPubMedGoogle Scholar
  25. 25.
    Ocon AJ, Medow MS, Taneja I, Stewart JM. Respiration drives phase synchronization between blood pressure and RR interval following loss of cardiovagal baroreflex during vasovagal syncope. Am J Physiol Heart Circ Physiol. 2011;300(2):H527–40.CrossRefGoogle Scholar
  26. 26.
    Ackland GL, Whittle J, Toner A, Machhada A, Del Arroyo AG, Sciuso A, et al. Molecular mechanisms linking autonomic dysfunction and impaired cardiac contractility in critical illness. Crit Care Med. 2016;44(8):e614–24.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Klemcke HG, Joe B, Rose R, Ryan KL. Life or death? A physiogenomic approach to understand individual variation in responses to hemorrhagic shock. Curr Genomics. 2011;12(6):428–42.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Convertino VA, Sather TM. Vasoactive neuroendocrine responses associated with tolerance to lower body negative pressure in humans. Clin Physiol. 2000;20(3):177–84.CrossRefPubMedGoogle Scholar
  29. 29.
    Wijeysundera DN, Butler GC, Ando S, Pollard M, Picton P, Floras JS. Attenuated cardiac baroreflex in men with presyncope evoked by lower body negative pressure. Clin Sci (Lond). 2001;100(3):303–9.CrossRefGoogle Scholar
  30. 30.
    Convertino VA, Rickards CA, Ryan KL. Autonomic mechanisms associated with heart rate and vasoconstrictor reserves. Clin Auton Res. 2012;22(3):123–30.CrossRefPubMedGoogle Scholar
  31. 31.
    Ellison GM, Torella D, Karakikes I, Purushothaman S, Curcio A, Gasparri C, et al. Acute beta-adrenergic overload produces myocyte damage through calcium leakage from the ryanodine receptor 2 but spares cardiac stem cells. J Biol Chem. 2007;282(15):11397–409.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Annane D, Trabold F, Sharshar T, Jarrin I, Blanc AS, Raphael JC, et al. Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am J Respir Crit Care Med. 1999;160(2):458–65.CrossRefPubMedGoogle Scholar
  33. 33.
    Norris PR, Ozdas A, Cao H, Williams AE, Harrell FE, Jenkins JM, et al. Cardiac uncoupling and heart rate variability stratify ICU patients by mortality: a study of 2088 trauma patients. Ann Surg. 2006;243(6):804–12; discussion 812–4.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hughson RL, Shoemaker JK. Autonomic responses to exercise: deconditioning/inactivity. Auton Neurosci. 2015;188:32–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Kumar A, Schupp E, Bunnell E, Ali A, Milcarek B, Parrillo JE. Cardiovascular response to dobutamine stress predicts outcome in severe sepsis and septic shock. Crit Care (London, England). 2008;12(2):R35.CrossRefGoogle Scholar
  36. 36.
    Vallet B, Chopin C, Curtis SE, Dupuis BA, Fourrier F, Mehdaoui H, et al. Prognostic value of the dobutamine test in patients with sepsis syndrome and normal lactate values: a prospective, multicenter study. Crit Care Med. 1993;21(12):1868–75.CrossRefPubMedGoogle Scholar
  37. 37.
    Rhodes A, Lamb FJ, Malagon I, Newman PJ, Grounds RM, Bennett ED. A prospective study of the use of a dobutamine stress test to identify outcome in patients with sepsis, severe sepsis, or septic shock. Crit Care Med. 1999;27(11):2361–6.CrossRefGoogle Scholar
  38. 38.
    Jellema WT, Groeneveld AB, Wesseling KH, Thijs LG, Westerhof N, van Lieshout JJ. Heterogeneity and prediction of hemodynamic responses to dobutamine in patients with septic shock. Crit Care Med. 2006;34(9):2392–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310(16):1683–91.CrossRefGoogle Scholar
  40. 40.
    Cruickshank M, Henderson L, MacLennan G, Fraser C, Campbell M, Blackwood B, et al. Alpha-2 agonists for sedation of mechanically ventilated adults in intensive care units: a systematic review. Health Technol Assess. 2016;20(25):v–xx, 1–117CrossRefPubMedGoogle Scholar
  41. 41.
    Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373(9678):1874–82.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Intensive Care Medicine 2019

Authors and Affiliations

  1. 1.Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science CentreLondonUK

Personalised recommendations