Advertisement

Bioimpedance and Bioreactance

  • Lee S. Nguyen
  • Pierre Squara
Chapter
Part of the Lessons from the ICU book series (LEICU)

Abstract

This chapter covers:

Notes

Conflicts of Interest

Pierre Squara was a consultant for Cheetah Medical between 2005 and 2010.

References

  1. 1.
    Altzer E, Lehmann G. Uber ein neues Verfarhen zur Darstellung der Herztätigkreit (Dielecktrogaphie). Arbeitsphysiologie. 1932;5:636–80.Google Scholar
  2. 2.
    Nyboer J, Bango S, Barnett A, Halsey R. Radiocardiograms: electrical impedance changes of the heart in relation to electrocardiograms and heart sounds. J Clin Invest. 1940;19:773.Google Scholar
  3. 3.
    Bonjer FH, Van Den Berg J, Dirken MN. The origin of the variations of body impedance occurring during the cardiac cycle. Circulation. 1952;6:415–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Thomasset A. Bio-electrical properties of tissue impedance measurements. Lyon Med. 1962;207:107–18.Google Scholar
  5. 5.
    Hoffer EC, Meador CK, Simpson DC. Correlation of whole-body impedance with total body water volume. J Appl Physiol. 1969;27:531–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Kubicek W, Patterson R, Witsoe D. Development and evaluation of an impedance cardiac output system. Aerospace Med. 1966;37:1208–12.PubMedGoogle Scholar
  7. 7.
    Tishchenko MI, Smirnov AD, Danilov LN, Aleksandrov AL. Characteristics and clinical use of integral rheography--a new method of measuring the stroke volume. Kardiologiia. 1973;13:54–62.PubMedGoogle Scholar
  8. 8.
    Sramek B. Non-invasive technique for measurements of cardiac output by mean of electrical impedance. Proceedings of the Fifth International Conference on Electrical Bioimpedance, Tokyo , Japan 1981, p. 39–42.Google Scholar
  9. 9.
    Bernstein DP. A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med. 1986;14:904–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Perko G, Perko MJ, Jansen E, Secher NH. Thoracic impedance as an index of body fluid balance during cardiac surgery. Acta Anaesthesiol Scand. 1991;35:568–71.PubMedCrossRefGoogle Scholar
  11. 11.
    Pomerantz M, Baumgartner R, Lauridson J, Eiseman B. Transthoracic electrical impedance for the early detection of pulmonary edema. Surgery. 1969;66:260–8.PubMedGoogle Scholar
  12. 12.
    Graziani G, Badalamenti S, Como G, Ambroso G, Gazzano G, Finazzi S, Mangiarotti R, Morganti A. Validation study of thoracic fluid bioimpedance for assessing the haemodialysis-induced changes in total body fluids. Blood Purif. 1994;12:106–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol. 2007;293:H583–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Barin E, Haryadi D, Schookin S, Westenskow D, Zubenko V, Beliaev K, Morozov A. Evaluation of a thoracic bioimpedance cardiac output monitor during cardiac catheterization. Crit Care Med. 2000;28:698–702.PubMedCrossRefGoogle Scholar
  15. 15.
    Spiess B, Patel M, Soltow L, Wright I. Comparison of bioimpedance versus thermodilution cardiac output during cardiac surgery: evaluation of a second-generation bioimpedance device. J Cardiothorac Vasc Anesth. 2001;15:567–73.PubMedCrossRefGoogle Scholar
  16. 16.
    Squara P, Denjean D, Estagnasie P, Brusset A, Dib JC, Dubois C. Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med. 2007;33:1191–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Bernstein DP. Continuous noninvasive real-time monitoring of stroke volume and cardiac output by thoracic electrical bioimpedance. Crit Care Med. 1986;14:898–901.PubMedCrossRefGoogle Scholar
  18. 18.
    Squara P, Cecconi M, Rhodes A, Singer M, Chiche JD. Tracking changes in cardiac output: methodological considerations for the validation of monitoring devices. Intensive Care Med. 2009;35:1801–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Squara P, Imhoff M, Cecconi M. Metrology in medicine: from measurements to decision, with specific reference to anesthesia and intensive care. Anesth Analg. 2015;120:66–75.PubMedCrossRefGoogle Scholar
  20. 20.
    Nierman DM, Eisen DI, Fein ED, Hannon E, Mechanick JI, Benjamin E. Transthoracic bioimpedance can measure extravascular lung water in acute lung injury. J Surg Res. 1996;65:101–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Newman RB, Pierre H, Scardo J. Thoracic-fluid conductivity in peripartum women with pulmonary edema. Obstet Gynecol. 1999;94:48–51.PubMedGoogle Scholar
  22. 22.
    Saunders CE. The use of transthoracic electrical bioimpedance in assessing thoracic fluid status in emergency department patients. Am J Emerg Med. 1998;6:337–40.CrossRefGoogle Scholar
  23. 23.
    Metry G, Mallmin H, Wikstrom B, Danielson BG. Proportional changes in body fluid with hemodialysis evaluated by dual-energy X-ray absorptiometry and transthoracic bioimpedance with particular emphasis on the thoracic region. Artif Organs. 1997;21:969–76.PubMedCrossRefGoogle Scholar
  24. 24.
    Zerahn B, Jensen BV, Olsen F, Petersen JR, Kanstrup IL. The effect of thoracentesis on lung function and transthoracic electrical bioimpedance. Respir Med. 1999;93:196–201.PubMedCrossRefGoogle Scholar
  25. 25.
    Peacock WI, Albert NM, Kies P, White RD, Emerman CL. Bioimpedance monitoring: better than chest x-ray for predicting abnormal pulmonary fluid? Congest Heart Fail. 2000;6:86–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Moharram EE, El Attar AM, Kamel MA. The impact of anesthesia on hemodynamic and volume changes in operative hysteroscopy: a bioimpedance randomized study. J Clin Anesth. 2017;38:59–67.PubMedCrossRefGoogle Scholar
  27. 27.
    Malfatto G, Blengino S, Perego GB, Branzi G, Villani A, Facchini M, Parati G. Transthoracic impedance accurately estimates pulmonary wedge pressure in patients with decompensated chronic heart failure. Congest Heart Fail. 2012;18:25–31.PubMedCrossRefGoogle Scholar
  28. 28.
    Cagini L, Capozzi R, Tassi V, Savignani C, Quintaliani G, Reboldi G, Puma F. Fluid and electrolyte balance after major thoracic surgery by bioimpedance and endocrine evaluation. Eur J Cardiothorac Surg. 2011;40:e71–6.PubMedGoogle Scholar
  29. 29.
    Malfatto G, Branzi G, Giglio A, Villani A, Facchini C, Ciambellotti F, Facchini M, Parati G. Transthoracic bioimpedance and brain natriuretic peptide levels accurately indicate additional diastolic dysfunction in patients with chronic advanced systolic heart failure. Eur J Heart Fail. 2010;12:928–35.PubMedCrossRefGoogle Scholar
  30. 30.
    Cuba-Gyllensten I, Gastelurrutia P, Bonomi AG, Riistama J, Bayes-Genis A, Aarts RM. A method to adapt thoracic impedance based on chest geometry and composition to assess congestion in heart failure patients. Med Eng Phys. 2016;38:538–46.CrossRefGoogle Scholar
  31. 31.
    Kamath SA, Drazner MH, Tasissa G, Rogers JG, Stevenson LW, Yancy CW. Correlation of impedance cardiography with invasive hemodynamic measurements in patients with advanced heart failure: the BioImpedance CardioGraphy (BIG) substudy of the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) Trial. Am Heart J. 2009;158:217–23.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kossari N, Hufnagel G, Squara P. Bioreactance: a new tool for cardiac output and thoracic fluid content monitoring during hemodialysis. Hemodial Int. 2009;13:512–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Nescolarde L, Bogonez P, Calpe J, Hernandez R, Donate T, Rosell J. Whole-body and thoracic bioimpedance measurement: hypertension and hyperhydration in hemodialysis patients. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3593–6.PubMedGoogle Scholar
  34. 34.
    Genoni M, Pelosi P, Romand JA, Pedoto A, Moccetti T, Malacrida R. Determination of cardiac output during mechanical ventilation by electrical bioimpedance or thermodilution in patients with acute lung injury: effects of positive end-expiratory pressure. Crit Care Med. 1998;26:1441–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Leslien S, McKee S, Newby D, Webb D, Denvir M. Non-invasive measurement of cardiac output in patients with chronic heart failure. Blood Press Monit. 2004;9:277–80.CrossRefGoogle Scholar
  36. 36.
    Engoren M, Barbee D. Comparison of cardiac output determined by bioimpedance, thermodilution, and the Fick method. Am J Crit Care. 2005;14:40–5.PubMedGoogle Scholar
  37. 37.
    Heringlake M, Handke U, Hanke T, Eberhardt F, Schumacher J, Gehring H, Heinze H. Lack of agreement between thermodilution and electrical velocimetry cardiac output measurements. Intensive Care Med. 2007;33:2168–72.PubMedCrossRefGoogle Scholar
  38. 38.
    Taylor K, Manlhiot C, McCrindle B, Grosse-Wortmann L, Holtby H. Poor accuracy of noninvasive cardiac output monitoring using bioimpedance cardiography [PhysioFlow(R)] compared to magnetic resonance imaging in pediatric patients. Anesth Analg. 2012;114:771–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Thonnerieux M, Alexander B, Binet C, Obadia JF, Bastien O, Desebbe O. The ability of esCCO and ECOM monitors to measure trends in cardiac output during alveolar recruitment maneuver after cardiac surgery: a comparison with the pulmonary thermodilution method. Anesth Analg. 2015;121:383–91.PubMedCrossRefGoogle Scholar
  40. 40.
    Magliocca A, Rezoagli E, Anderson TA, Burns SM, Ichinose F, Chitilian HV. Cardiac output measurements based on the pulse wave transit time and thoracic impedance exhibit limited agreement with thermodilution method during orthotopic liver transplantation. Anesth Analg. 2017;  https://doi.org/10.1213/ANE.0000000000002171.CrossRefGoogle Scholar
  41. 41.
    Boldt J, Kling D, Thiel A, Hempelmann G. Non-invasive versus invasive cardiovascular monitoring. Determination of stroke volume and pulmonary hydration using a new bioimpedance monitor. Anaesthesist. 1988;37:218–23.PubMedGoogle Scholar
  42. 42.
    Ram M, Lavie A, Lev S, Blecher Y, Amikam U, Shulman Y, Avnon T, Weiner E, Many A. Cardiac hemodynamics before, during and after elective cesarean section under spinal anesthesia in low-risk women. J Perinatol. 2017;  https://doi.org/10.1038/jp.2017.53.PubMedCrossRefGoogle Scholar
  43. 43.
    Keramidas ME, Kolegard R, Mekjavic IB, Eiken O. PlanHab: hypoxia exaggerates the bed-rest-induced reduction in peak oxygen uptake during upright cycle ergometry. Am J Physiol Heart Circ Physiol. 2016;311:H453–64.PubMedCrossRefGoogle Scholar
  44. 44.
    Gayda M, Normandin E, Meyer P, Juneau M, Haykowsky M, Nigam A. Central hemodynamic responses during acute high-intensity interval exercise and moderate continuous exercise in patients with heart failure. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee. Nutrition et Metabolisme. 2012;37:1171–8.Google Scholar
  45. 45.
    Marqué S, Cariou A, Chiche J, Squara P. Non Invasive Cardiac Output Monitoring (NICOM) compared to minimally invasive monitoring (VIGILEO). Crit Care. 2009;13(3):R73.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    De Pascale G, Singer M, Brealey D. Comparison of stroke volume measurement between non-invasive bioreactance and esophageal Doppler in patients undergoing major abdominal-pelvic surgery. J Anesth. 2017;31:545–51.PubMedCrossRefGoogle Scholar
  47. 47.
    Fagnoul D, Vincent JL. Backer de D, Cardiac output measurements using the bioreactance technique in critically ill patients. Crit Care. 2012;16:460.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Conway DH, Hussain OA, Gall I. A comparison of noninvasive bioreactance with oesophageal Doppler estimation of stroke volume during open abdominal surgery: an observational study. Eur J Anaesthesiol. 2013;30:501–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Trinkmann F, Schneider C, Michels JD, Stach K, Doesch C, Schoenberg SO, Borggrefe M, Saur J, Papavassiliu T. Comparison of bioreactance non-invasive cardiac output measurements with cardiac magnetic resonance imaging. Anaesth Intensive Care. 2016;44:769–76.PubMedGoogle Scholar
  50. 50.
    Huang L, Critchley LA, Zhang J. Major upper abdominal surgery alters the calibration of bioreactance cardiac output readings, the NICOM, when comparisons are made against suprasternal and esophageal Doppler intraoperatively. Anesth Analg. 2015;121:936–45.PubMedCrossRefGoogle Scholar
  51. 51.
    Rosenblum H, Helmke S, Williams P, Teruya S, Jones M, Burkhoff D, Mancini D, Maurer MS. Peak cardiac power measured noninvasively with a bioreactance technique is a predictor of adverse outcomes in patients with advanced heart failure. Congest Heart Fail. 2010;16:254–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Myers J, Gujja P, Neelagaru S, Burkhoff D. Cardiac output and cardiopulmonary responses to exercise in heart failure: application of a new bio-reactance device. J Card Fail. 2007;13:629–36.PubMedCrossRefGoogle Scholar
  53. 53.
    Doherty A, El-Khuffash A, Monteith C, McSweeney L, Breatnach C, Kent E, Tully E, Malone F, Thornton P. Comparison of bioreactance and echocardiographic non-invasive cardiac output monitoring and myocardial function assessment in primagravida women. Br J Anaesth. 2017;118:527–32.PubMedCrossRefGoogle Scholar
  54. 54.
    Rich JD, Archer SL, Rich S. Noninvasive cardiac output measurements in patients with pulmonary hypertension. Eur Respir J. 2013;42:125–33.PubMedCrossRefGoogle Scholar
  55. 55.
    Engineer RS, Benoit JL, Hicks CW, Kolattukudy SJ, Burkhoff D, Peacock WF. Hemodynamic changes as a diagnostic tool in acute heart failure--a pilot study. Am J Emerg Med. 2012;30:174–80.PubMedCrossRefGoogle Scholar
  56. 56.
    Elliott A, Hull JH, Nunan D, Jakovljevic DG, Brodie D, Ansley L. Application of bioreactance for cardiac output assessment during exercise in healthy individuals. Eur J Appl Physiol. 2010;109:945–51.PubMedCrossRefGoogle Scholar
  57. 57.
    Khan FZ, Virdee MS, Hutchinson J, Smith B, Pugh PJ, Read PA, Fynn SP, Dutka DP. Cardiac resynchronization therapy optimization using noninvasive cardiac output measurement. Pacing Clin Electrophysiol. 2011;34:1527–36.PubMedCrossRefGoogle Scholar
  58. 58.
    Jones MA, Khiani R, Foley P, Webster D, Qureshi N, Wong KC, Rajappan K, Bashir Y, Betts TR. Inter- and intravein differences in cardiac output with cardiac resynchronization pacing using a multipolar LV pacing lead. Pacing Clin Electrophysiol. 2015;38:267–74.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang JS, Wu MH, Mao TY, Fu TC, Hsu CC. Effects of normoxic and hypoxic exercise regimens on cardiac, muscular, and cerebral hemodynamics suppressed by severe hypoxia in humans. J Appl Physiol. 1985;109:219–29.CrossRefGoogle Scholar
  60. 60.
    Benomar B, Ouattara A, Estagnasie P, Brusset A, Squara P. Fluid responsiveness predicted by noninvasive bioreactance-based passive leg raise test. Intensive Care Med. 2010;36:1875–81.PubMedCrossRefGoogle Scholar
  61. 61.
    Marik PE, Levitov A, Young A, Andrews L. The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest. 2013;143:364–70.PubMedCrossRefGoogle Scholar
  62. 62.
    Okwose NC, Chowdhury S, Houghton D, Trenell MI, Eggett C, Bates M, MacGowan GA, Jakovljevic DG. Comparison of cardiac output estimates by bioreactance and inert gas rebreathing methods during cardiopulmonary exercise testing. Clin Physiol Funct Imaging. 2017;  https://doi.org/10.1111/cpf.12442.PubMedCrossRefGoogle Scholar
  63. 63.
    Min JJ, Lee JH, Hong KY, Choi SJ. Utility of stroke volume variation measured using non-invasive bioreactance as a predictor of fluid responsiveness in the prone position. J Clin Monit Comput. 2017;31:397–405.PubMedCrossRefGoogle Scholar
  64. 64.
    Tremper KK, Hufstedler SM, Barker SJ, Zaccari J, Harris D, Anderson S, Roohk V. Continuous noninvasive estimation of cardiac output by electrical bioimpedance: an experimental study in dogs. Crit Care Med. 1986;14:231–3.PubMedCrossRefGoogle Scholar
  65. 65.
    Panagiotou M, Vogiatzis I, Jayasekera G, Louvaris Z, Mackenzie A, McGlinchey N, Baker JS, Church AC, Peacock AJ, Johnson MK. Validation of impedance cardiography in pulmonary arterial hypertension. Clin Physiol Funct Imaging. 2017;  https://doi.org/10.1111/cpf.12408.PubMedCrossRefGoogle Scholar
  66. 66.
    Peyton PJ, Chong SW. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology. 2010;113:1220–35.PubMedCrossRefGoogle Scholar
  67. 67.
    Joosten A, Desebbe O, Suehiro K, Murphy LS, Essiet M, Alexander B, Fischer MO, Barvais L, Van Obbergh L, Maucort-Boulch D, Cannesson M. Accuracy and precision of non-invasive cardiac output monitoring devices in perioperative medicine: a systematic review and meta-analysis. Br J Anaesth. 2017;118:298–310.PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Intensive Care Medicine 2019

Authors and Affiliations

  • Lee S. Nguyen
    • 1
  • Pierre Squara
    • 1
  1. 1.Critical Care Medicine DepartmentCMC Ambroise ParéNeuilly-sur-SeineFrance

Personalised recommendations