Advertisement

The PCO2 Gaps

  • Gustavo A. Ospina-Tascón
Chapter
Part of the Lessons from the ICU book series (LEICU)

Abstract

Carbon dioxide is a catabolic product generated during the Krebs cycle under normoxic conditions. As a final product of cellular respiration, carbon dioxide-derived variables could be potentially used to monitor tissue perfusion and to detect the appearance of anaerobic metabolism during shock states.

Keywords

Shock Septic shock Venous-to-arterial carbon dioxide difference Venous-arterial carbon dioxide to arterial-venous oxygen content difference ratio Cardiac output Microcirculation 

References

  1. 1.
    Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726–34.PubMedCrossRefGoogle Scholar
  3. 3.
    Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med. 1988;16(11):1117–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Vallet B. Vascular reactivity and tissue oxygenation. Intensive Care Med. 1998;24(1):3–11.PubMedCrossRefGoogle Scholar
  5. 5.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.PubMedCrossRefGoogle Scholar
  6. 6.
    Bellomo R, Reade MC, Warrillow SJ. The pursuit of a high central venous oxygen saturation in sepsis: growing concerns. Crit Care. 2008;12(2):130.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(16):1496–506.PubMedCrossRefGoogle Scholar
  8. 8.
    Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93.PubMedCrossRefGoogle Scholar
  10. 10.
    van Beest PA, Hofstra JJ, Schultz MJ, Boerma EC, Spronk PE, Kuiper MA. The incidence of low venous oxygen saturation on admission to the intensive care unit: a multi-center observational study in The Netherlands. Crit Care. 2008;12(2):R33.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ospina-Tascón GA, Umaña M, Bermúdez WF, Bautista-Rincón DF, Valencia JD, Madriñán HJ, et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2016;42(2):211–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28(3):272–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Ospina-Tascón GA, Umaña M, Bermúdez W, Bautista-Rincón DF, Hernandez G, Bruhn A, et al. Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O 2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med. 2015;41(5):796–805.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ospina-Tascón GA, Bautista-Rincón DF, Umaña M, Tafur JD, Gutiérrez A, García AF, et al. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit Care. 2013;17(6):R294.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Vallée F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34(12):2218–25.PubMedCrossRefGoogle Scholar
  16. 16.
    Herve P, Simonneau G, Girard P, Cerrina J, Mathieu M, Duroux P. Hypercapnic acidosis induced by nutrition in mechanically ventilated patients: glucose versus fat. Crit Care Med. 1985;13(7):537–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Marcinek DJ, Kushmerick MJ, Conley KE. Lactic acidosis in vivo: testing the link between lactate generation and H+ accumulation in ischemic mouse muscle. J Appl Physiol (1985). 2010;108(6):1479–86.PubMedCentralCrossRefGoogle Scholar
  18. 18.
    Randall HM, Cohen JJ. Anaerobic CO2 production by dog kidney in vitro. Am J Phys. 1966;211(2):493–505.CrossRefGoogle Scholar
  19. 19.
    Jensen FB. Comparative analysis of autoxidation of haemoglobin. J Exp Biol. 2001;204(Pt 11):2029–33.PubMedGoogle Scholar
  20. 20.
    McHardy GJ. The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood. Clin Sci. 1967;32(2):299–309.PubMedGoogle Scholar
  21. 21.
    Cavaliere F, Giovannini I, Chiarla C, Conti G, Pennisi MA, Montini L, et al. Comparison of two methods to assess blood CO2 equilibration curve in mechanically ventilated patients. Respir Physiol Neurobiol. 2005;146(1):77–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Lamia B, Monnet X, Teboul JL. Meaning of arterio-venous PCO2 difference in circulatory shock. Minerva Anestesiol. 2006;72(6):597–604.PubMedGoogle Scholar
  23. 23.
    Giovannini I, Chiarla C, Boldrini G, Castagneto M. Calculation of venoarterial CO2 concentration difference. J Appl Physiol (1985). 1993;74(2):959–64.CrossRefGoogle Scholar
  24. 24.
    Grundler W, Weil MH, Rackow EC. Arteriovenous carbon dioxide and pH gradients during cardiac arrest. Circulation. 1986;74(5):1071–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Weil MH, Rackow EC, Trevino R, Grundler W, Falk JL, Griffel MI. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med. 1986;315(3):153–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang H, Vincent JL. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis. 1993;148(4 Pt 1):867–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Van der Linden P, Rausin I, Deltell A, Bekrar Y, Gilbart E, Bakker J, et al. Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg. 1995;80(2):269–75.PubMedGoogle Scholar
  28. 28.
    Groeneveld AB, Vermeij CG, Thijs LG. Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg. 1991;73(5):576–82.PubMedGoogle Scholar
  29. 29.
    Teboul JL, Mercat A, Lenique F, Berton C, Richard C. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med. 1998;26(6):1007–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Schlichtig R, Bowles SA. Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol (1985). 1994;76(6):2443–51.CrossRefGoogle Scholar
  31. 31.
    Vallet B, Tavernier B, Lund N. Assessment of tissue oxygenation in the critically III. In: Vincent J-L, editor. Yearbook of intensive care and emergency medicine. Berlin/Heidelberg: Springer Berlin Heidelberg; 2000. p. 715–25.Google Scholar
  32. 32.
    Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol (1985). 2000;89(4):1317–21.CrossRefGoogle Scholar
  33. 33.
    Nevière R, Chagnon JL, Teboul JL, Vallet B, Wattel F. Small intestine intramucosal PCO(2) and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med. 2002;30(2):379–84.PubMedCrossRefGoogle Scholar
  34. 34.
    Dubin A, Estenssoro E, Murias G, Pozo MO, Sottile JP, Barán M, et al. Intramucosal-arterial Pco2 gradient does not reflect intestinal dysoxia in anemic hypoxia. J Trauma. 2004;57(6):1211–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest. 1992;101(2):509–15.PubMedCrossRefGoogle Scholar
  36. 36.
    Mecher CE, Rackow EC, Astiz ME, Weil MH. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med. 1990;18(6):585–9.PubMedCrossRefGoogle Scholar
  37. 37.
    van Beest PA, Lont MC, Holman ND, Loef B, Kuiper MA, Boerma EC. Central venous-arterial pCO2 difference as a tool in resuscitation of septic patients. Intensive Care Med. 2013;39(6):1034–9.PubMedCrossRefGoogle Scholar
  38. 38.
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166(1):98–104.PubMedCrossRefGoogle Scholar
  39. 39.
    De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010;36(11):1813–25.PubMedCrossRefGoogle Scholar
  40. 40.
    Zuurbier CJ, van Iterson M, Ince C. Functional heterogeneity of oxygen supply-consumption ratio in the heart. Cardiovasc Res. 1999;44(3):488–97.PubMedCrossRefGoogle Scholar
  41. 41.
    Stein JC, Ellis CG, Ellsworth ML. Relationship between capillary and systemic venous PO2 during nonhypoxic and hypoxic ventilation. Am J Phys. 1993;265(2 Pt 2):H537–42.Google Scholar
  42. 42.
    Goldman D, Bateman RM, Ellis CG. Effect of decreased O2 supply on skeletal muscle oxygenation and O2 consumption during sepsis: role of heterogeneous capillary spacing and blood flow. Am J Physiol Heart Circ Physiol. 2006;290(6):H2277–85.PubMedCrossRefGoogle Scholar
  43. 43.
    Ospina-Tascón GA, García Marin AF, Echeverri GJ, Bermudez WF, Madriñán-Navia H, Valencia JD, et al. Effects of dobutamine on intestinal microvascular blood flow heterogeneity and O2 extraction during septic shock. J Appl Physiol (1985). 2017;122(6):1406–17.PubMedCentralCrossRefGoogle Scholar
  44. 44.
    Humer MF, Phang PT, Friesen BP, Allard MF, Goddard CM, Walley KR. Heterogeneity of gut capillary transit times and impaired gut oxygen extraction in endotoxemic pigs. J Appl Physiol (1985). 1996;81(2):895–904.CrossRefGoogle Scholar
  45. 45.
    Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32(9):1825–31.PubMedCrossRefGoogle Scholar
  46. 46.
    De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado D, Scolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41(3):791–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL. Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med. 2006;32(4):516–23.PubMedCrossRefGoogle Scholar
  48. 48.
    Nevière R, Mathieu D, Chagnon JL, Lebleu N, Wattel F. The contrasting effects of dobutamine and dopamine on gastric mucosal perfusion in septic patients. Am J Respir Crit Care Med. 1996;154(6 Pt 1):1684–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Mallat J, Pepy F, Lemyze M, Gasan G, Vangrunderbeeck N, Tronchon L, et al. Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. Eur J Anaesthesiol. 2014;31(7):371–80.PubMedCrossRefGoogle Scholar
  50. 50.
    Du W, Liu DW, Wang XT, Long Y, Chai WZ, Zhou X, et al. Combining central venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock. J Crit Care. 2013;28(6):1110.e1–5.CrossRefGoogle Scholar
  51. 51.
    Robin E, Futier E, Pires O, Fleyfel M, Tavernier B, Lebuffe G, et al. Central venous-to-arterial carbon dioxide difference as a prognostic tool in high-risk surgical patients. Crit Care. 2015;19:227.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Guinot PG, Badoux L, Bernard E, Abou-Arab O, Lorne E, Dupont H. Central venous-to-arterial carbon dioxide partial pressure difference in patients undergoing cardiac surgery is not related to postoperative outcomes. J Cardiothorac Vasc Anesth. 2017;31(4):1190–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Morel J, Grand N, Axiotis G, Bouchet JB, Faure M, Auboyer C, et al. High veno-arterial carbon dioxide gradient is not predictive of worst outcome after an elective cardiac surgery: a retrospective cohort study. J Clin Monit Comput. 2016;30(6):783–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Dubin A, Ferrara G, Kanoore Edul VS, Martins E, Canales HS, Canullán C, et al. Venoarterial PCO2-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study. Ann Intensive Care. 2017;7(1):65.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Danin PE, Bendjelid K. The venous-arterial CO2 to arterial-venous O2 content difference ratio: easy to monitor? J Crit Care. 2016;35:217–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Wasserman K, Beaver WL, Whipp BJ. Gas exchange theory and the lactic acidosis (anaerobic) threshold. Circulation. 1990;81(1 Suppl):II14–30.PubMedGoogle Scholar
  57. 57.
    Cohen IL, Sheikh FM, Perkins RJ, Feustel PJ, Foster ED. Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Crit Care Med. 1995;23(3):545–52.PubMedCrossRefGoogle Scholar
  58. 58.
    Rimachi R, Bruzzi de Carvahlo F, Orellano-Jimenez C, Cotton F, Vincent JL, De Backer D. Lactate/pyruvate ratio as a marker of tissue hypoxia in circulatory and septic shock. Anaesth Intensive Care. 2012;40(3):427–32.PubMedCrossRefGoogle Scholar
  59. 59.
    Gore DC, Jahoor F, Hibbert JM, DeMaria EJ. Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg. 1996;224(1):97–102.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Levraut J, Ciebiera JP, Chave S, Rabary O, Jambou P, Carles M, et al. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med. 1998;157(4 Pt 1):1021–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Tapia P, Soto D, Bruhn A, Alegría L, Jarufe N, Luengo C, et al. Impairment of exogenous lactate clearance in experimental hyperdynamic septic shock is not related to total liver hypoperfusion. Crit Care. 2015;19:188.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    He HW, Liu DW, Long Y, Wang XT. High central venous-to-arterial CO2 difference/arterial-central venous O2 difference ratio is associated with poor lactate clearance in septic patients after resuscitation. J Crit Care. 2016;31(1):76–81.PubMedCrossRefGoogle Scholar
  63. 63.
    Mesquida J, Saludes P, Gruartmoner G, Espinal C, Torrents E, Baigorri F, et al. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Crit Care. 2015;19:126.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41(6):1412–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Mallat J, Lemyze M, Meddour M, Pepy F, Gasan G, Barrailler S, et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann Intensive Care. 2016;6(1):10.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jakob SM, Kosonen P, Ruokonen E, Parviainen I, Takala J. The Haldane effect – an alternative explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth. 1999;83(5):740–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Hurley R, Mythen MG. The Haldane effect – an explanation for increasing gastric mucosal PCO2 gradients? Br J Anaesth. 2000;85(1):167–9.PubMedGoogle Scholar
  68. 68.
    Alegría L, Vera M, Dreyse J, Castro R, Carpio D, Henriquez C, et al. A hypoperfusion context may aid to interpret hyperlactatemia in sepsis-3 septic shock patients: a proof-of-concept study. Ann Intensive Care. 2017;7(1):29.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Chioléro R, Flatt JP, Revelly JP, Jéquier E. Effects of catecholamines on oxygen consumption and oxygen delivery in critically ill patients. Chest. 1991;100(6):1676–84.PubMedCrossRefGoogle Scholar
  70. 70.
    Teboul JL, Graini L, Boujdaria R, Berton C, Richard C. Cardiac index vs oxygen-derived parameters for rational use of dobutamine in patients with congestive heart failure. Chest. 1993;103(1):81–5.PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Intensive Care Medicine 2019

Authors and Affiliations

  • Gustavo A. Ospina-Tascón
    • 1
  1. 1.Department of Intensive Care MedicineFundación Valle del Lili - Universidad ICESICaliColombia

Personalised recommendations