Statistical Data Analysis Using SAS pp 1-68 | Cite as
Introduction to the SAS Language
Chapter
First Online:
Abstract
SAS programming is introduced via a simple program. The basic structure of a SAS program is examined accompanied with a summary of rules and syntax for writing elementary SAS statements. Details of the data step are covered including the creation of a SAS data set using external data and examples of important data step programming statements. The INPUT statement and the operation of the SAS data step are presented in detail. The SAS procedure step is introduced using an example using the PRINT procedure. The use of proc statement options and procedure information statements are also illustrated in this example.
Keywords
Data step Proc step Input List input Formatted input Column input Data step programming Program data vector PDV Input buffer Pointer controls Variable attributes Format statement Length statement By statement Array statement Output statement Trailing at Retain Style= optionReferences
- Agresti, A. (2013). Categorical data analysis (3rd ed.). Hoboken, NJ: Wiley.MATHGoogle Scholar
- Akaike, H. (1981). Likelihood of a model and information criteria. Journal of Econometrics, 16, 3–14.CrossRefGoogle Scholar
- Armitage, P., & Berry, G. (1994). Statistical methods in medical research (3rd ed.). Malden, MA: Blackwell.Google Scholar
- Bates, D.M., & Watts, D.G. (1988). Nonlinear regression analysis and its applications. New York, NY: Wiley.CrossRefGoogle Scholar
- Bliss, C. I. (1935). The calculation of the dosage-mortality curve. Annals of Applied Biology, 22(1), 134–167.CrossRefGoogle Scholar
- Bliss, C. I. (1970). Statistics in biology (Vol. 2). New York, NY: McGraw-Hill.MATHGoogle Scholar
- Bowerman, B. L., & O’Connell, R. T. (2004). Business statistics in practice (4th ed.). Chicago, IL: McGraw-Hill/Irwin.Google Scholar
- Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters. New York, NY: Wiley.MATHGoogle Scholar
- Breslow, N. E. (1984). Extra-Poisson variation in Log-linear models. Applied Statistics, 33(1), 38–44.CrossRefGoogle Scholar
- Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. A. (1983). Graphical methods in data analysis. Belmont, CA: Wadsworth.MATHGoogle Scholar
- Chen, W. W., Neipel, M., & Sorger, P. K. (2010). Classic and contemporary approaches to modeling biochemical reactions. Genes & Development, 24(17), 1861–1875.CrossRefGoogle Scholar
- Collett, D. (2003). Modelling binary data. London: Chapman & Hall.MATHGoogle Scholar
- Crowder, M. J. (1978). Beta-binomial Anova for proportions. Applied Statistics, 27(1), 34–37.CrossRefGoogle Scholar
- Deak, N. A., & Johnson, L. A. (2007). Effects of extraction temperature and preservation method on functionality of soy protein. Journal of the American Oil Chemists’ Society, 84, 259–268.CrossRefGoogle Scholar
- Devore, J. L. (1982). Probability and statistics for engineering and the sciences. Monterey, CA: Brooks/Cole.MATHGoogle Scholar
- Draper, N. R., & Smith, H. (1981) Applied regression analysis (2nd ed.). New York, NY: Wiley.MATHGoogle Scholar
- Draper, N. R., & Smith, H. (1998). Applied regression analysis (3rd ed.). New York, NY: Wiley.MATHGoogle Scholar
- Dunn, O. J., & Clark, V. A. (1987). Applied statistics: Analysis of variance and regression analysis (2nd ed.). New York, NY: Wiley.MATHGoogle Scholar
- Efron, B., Hastie, T. J., Johnstone, I. M., & Tibshirani, R. (2004). Least angle regression (with discussion). Annals of Statistics, 32, 407–499.MathSciNetCrossRefGoogle Scholar
- Endrenyi, L. (1981). Kinetic data analysis. New York: Springer.CrossRefGoogle Scholar
- Graubard, B. I., & Korn, E. L. (1987). Choice of column scores for testing independence in ordered 2xk contingency tables (with discussion). Biometrics, 43, 471–476.MathSciNetCrossRefGoogle Scholar
- Henderson, C. R., Kempthorne, O., Searle, S. R., & von Krosigk, C. N. (1959). Estimation of environmental and genetic trends from records subject to culling. Biometrics, 15, 192–218.CrossRefGoogle Scholar
- Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983–997.CrossRefGoogle Scholar
- Kirk, R. E. (1982). Experimental design (2nd ed.). Monterey, CA: Brooks/Cole.Google Scholar
- Koopmans, L. H. (1987). Introduction to contemporary statistical methods (2nd ed.). Boston, MA: Duxbury.Google Scholar
- Kuehl, R. O. (2000). Design of experiments: Statistical principles of research design and analysis. Pacific Grove, CA: Brooks/Cole.MATHGoogle Scholar
- Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2004). Applied linear regression models (4th ed.). Chicago, IL: McGraw-Hill/Irwin.Google Scholar
- Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models (5th ed.). Chicago, IL: McGraw-Hill/Irwin.Google Scholar
- Leskovac, V. (2003). Comprehensive enzyme kinetics. New York: Kluwer Academic/Plenum.Google Scholar
- Lindsey, J. K. (2001). Nonlinear models in medical sciences. New York, NY: Oxford University Press.MATHGoogle Scholar
- Littell, R. C., Freund, R. J., & Spector, P. C. (1991). SAS system for linear models (3rd ed.). Cary, NC: SAS Institute Inc.Google Scholar
- Lloyd, C. J. (1999). Statistical analysis of categorical data. New York, NY: Wiley.MATHGoogle Scholar
- Lund, R. E. (1975). Tables for an approximate test for outliers in linear models. Technometrics, 17, 473–476.CrossRefGoogle Scholar
- Madsen, H., & Thyregod, P. (2011). Introduction to general and generalized linear models. Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
- Margolin, B. H., Kaplan, N., & Zeiger, E. (1981). Statistical analysis of the Ames Salmonella test. Proceedings of the National Academy of Sciences of the United States of America, 78(6), 3779–3783.CrossRefGoogle Scholar
- Mason, R. L., Gunst, R. F., & Hess, J. L. (1989). Statistical design & analysis of experiments. New York, NY: Wiley.MATHGoogle Scholar
- McClave, J. T., Benson, G. P., & Sincich T. L. (2000). Statistics for business and economics (8th ed.). Englewood Cliffs, NJ: Prentice Hall Inc.MATHGoogle Scholar
- McCullagh, P., & Nelder, J. (1989). Generalized linear models (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC.CrossRefGoogle Scholar
- McDonald, G. C., & Schwing, R. C. (1973). Instabilities of regression estimates relating air pollution to mortality. Technometrics, 15, 463–482.CrossRefGoogle Scholar
- Milliken, G. A., & Johnson, D. E. (2001). Analysis of Messy data, volume III: Analysis of covariance. Boca Raton, FL: Chapman & Hall/CRC.CrossRefGoogle Scholar
- Montgomery, D. C. (1991). The design and analysis of experiments (3rd ed.). New York, NY: Wiley.MATHGoogle Scholar
- Montgomery, D. C. (2013). The design and analysis of experiments (8th ed.). New York, NY: Wiley.Google Scholar
- Moore, L. M., & Beckman, R. J. (1988). Approximate one-sided tolerance bounds on the number of failures using Poisson regression. Technometrics, 30, 283–290.CrossRefGoogle Scholar
- Morel, J. G., & Neerchal, N. K. (2012). Overdispersion models in SAS. Cary, NC: SAS Institute Inc.Google Scholar
- Morrison, D. F. (1983). Applied linear statistical methods. Englewood Cliffs, NJ: Prentice Hall Inc.MATHGoogle Scholar
- Myers, R. H. (1990). Classical and modern regression with applications (2nd ed.). Boston, MA: PWS-KENT Publishing.Google Scholar
- Nelder, J., & Wedderburn, R. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A, 135, 370–384.CrossRefGoogle Scholar
- Okada, Y., Yabe, T., & Oda, S. (2010). Temperature-dependent sex determination in Japanese pond turtles, Mauremys japonica (Reptilia: Geoemydidea). Current Herpetology, 29(1), 1–10.CrossRefGoogle Scholar
- Ostle, B. (1963). Statistics in research (2nd ed.). Ames, IA: Iowa State University Press.MATHGoogle Scholar
- Ott, R. L., Larson, R. F., & Mendenhall, W. (1987). Statistics: A tool for the social sciences (4th ed.). Boston, MA: Duxbury.Google Scholar
- Ott, R. L., & Longnecker, M. (2001). An introduction to statistical methods and data analysis (5th ed.). Pacific Grove, CA: Duxbury.Google Scholar
- Price, C. J., Kimmel, C. A., George, J. D., & Marr, M.C. (1987). The developmental toxicity of diethylene glycol dimethyl ether in mice. Fundamental and Applied Toxicology, 8, 115–126.CrossRefGoogle Scholar
- Rice, J. A. (1988). Mathematical statistics and data analysis. Pacific Grove, CA: Wadsworth & Brooks/Cole.MATHGoogle Scholar
- Sahai, H., & Ageel M. I. (2000). The analysis of variance. Boston, MA: Birkhäuser.CrossRefGoogle Scholar
- Schlotzhauer, S. D., & Littell, R. C. (1997). SAS system for elementary statistical analysis (2nd ed.). Cary, NC: SAS Institute Inc.Google Scholar
- Searle, S. R. (1971). Linear models. New York, NY: Wiley.MATHGoogle Scholar
- Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance components. New York, NY: Wiley.CrossRefGoogle Scholar
- Simonoff, J. S. (2003). Analyzing categorical data. New York: Springer-Verlag.CrossRefGoogle Scholar
- Simpson, J., Olsen, A., & Eden, J. (1975). A Bayesian analysis of a multiplicative treatment effect in weather modification. Technometrics, 17, 161–166.CrossRefGoogle Scholar
- Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods (8th ed.). Ames, IA: Iowa State University Press.MATHGoogle Scholar
- Sokal, R. R., & Rohlf, J. F. (1995). Biometry: The principles and practice of statistics in biological research (3rd ed.). New York, NY: Freeman.MATHGoogle Scholar
- Stamey, T., Kabalin, J., McNeal, J., Johnstone, I., Freiha, F., Redwine, E., & Yang, N. (1989). Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate II radical prostatectomy treated patients. Journal of Urology, 16, 1076–1083.CrossRefGoogle Scholar
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.MathSciNetMATHGoogle Scholar
- Tukey, J. W. (1949). One degree of freedom for nonadditivity. Biometrics, 5, 232–242.CrossRefGoogle Scholar
- Ver Hoef, J., & Boveng, P. (2007). Quasi-Poisson vs. negative binomial regression: How should we model overdispersed count data? Ecology, 11, 2766–2772.CrossRefGoogle Scholar
- Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439–447.MathSciNetMATHGoogle Scholar
- Weisberg, S. (1985). Applied linear regression analysis (2nd ed.). New York, NY: Wiley.MATHGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018