• Anita MahajanEmail author
Part of the Practical Guides in Radiation Oncology book series (PGRO)


As Harvey Cushing stated, craniopharyngiomas (CPs) are the most “baffling” tumors [1]. Surgery and radiation therapy (RT) offer good local control; however, patients are at risk of a wide variety of tumor- and treatment-related morbidities that affect quality of life and long-term survival [2–5]. Management of CP requires multidisciplinary management with meticulous attention to toxicity reduction. Advances in RT technology lead to better precision and accuracy in treatment planning and delivery that can contribute to reducing toxicities in these vulnerable patients.


  1. 1.
    Cushing H (1932) Papers relating to the pituitary body, hypothalamus and parasympathetic nervous system. Thomas, BaltimoreGoogle Scholar
  2. 2.
    Kiehna EN, Merchant TE (2010) Radiation therapy for pediatric craniopharyngioma. Neurosurg Focus 28(4):E10CrossRefGoogle Scholar
  3. 3.
    Habrand JL et al (1999) The role of radiation therapy in the management of craniopharyngioma: a 25-year experience and review of the literature. Int J Radiat Oncol Biol Phys 44(2):255–263CrossRefGoogle Scholar
  4. 4.
    Tan TS et al (2017) The neuroendocrine sequelae of paediatric craniopharyngioma: a 40-year meta-data analysis of 185 cases from three UK centres. Eur J Endocrinol 176(3):359–369CrossRefGoogle Scholar
  5. 5.
    Manley PE et al (2012) Sleep dysfunction in long term survivors of craniopharyngioma. J Neuro-Oncol 108(3):543–549CrossRefGoogle Scholar
  6. 6.
    Bunin GR et al (1998) The descriptive epidemiology of craniopharyngioma. J Neurosurg 89(4):547–551CrossRefGoogle Scholar
  7. 7.
    Apps JR et al (2016) Imaging invasion: micro-CT imaging of adamantinomatous craniopharyngioma highlights cell type specific spatial relationships of tissue invasion. Acta Neuropathol Commun 4(1):57CrossRefGoogle Scholar
  8. 8.
    Burghaus S et al (2010) A tumor-specific cellular environment at the brain invasion border of adamantinomatous craniopharyngiomas. Virchows Arch 456(3):287–300CrossRefGoogle Scholar
  9. 9.
    Adamson TE et al (1990) Correlation of clinical and pathological features in surgically treated craniopharyngiomas. J Neurosurg 73(1):12–17CrossRefGoogle Scholar
  10. 10.
    Marucci G et al (2015) Targeted BRAF and CTNNB1 next-generation sequencing allows proper classification of nonadenomatous lesions of the sellar region in samples with limiting amounts of lesional cells. Pituitary 18(6):905–911CrossRefGoogle Scholar
  11. 11.
    Pan J et al (2016) Growth patterns of craniopharyngiomas: clinical analysis of 226 patients. J Neurosurg Pediatr 17(4):418–433CrossRefGoogle Scholar
  12. 12.
    Wang KC et al (2002) Growth patterns of craniopharyngioma in children: role of the diaphragm sellae and its surgical implication. Surg Neurol 57(1):25–33CrossRefGoogle Scholar
  13. 13.
    Komotar RJ, Roguski M, Bruce JN (2009) Surgical management of craniopharyngiomas. J Neuro-Oncol 92(3):283–296CrossRefGoogle Scholar
  14. 14.
    Merchant TE et al (2002) Craniopharyngioma: the St. Jude Children’s research hospital experience 1984-2001. Int J Radiat Oncol Biol Phys 53(3):533–542CrossRefGoogle Scholar
  15. 15.
    Hoogenhout J et al (1984) Surgery and radiation therapy in the management of craniopharyngiomas. Int J Radiat Oncol Biol Phys 10(12):2293–2297CrossRefGoogle Scholar
  16. 16.
    Flitsch J, Aberle J, Burkhardt T (2015) Surgery for pediatric craniopharyngiomas: is less more? J Pediatr Endocrinol Metab 28(1–2):27–33PubMedGoogle Scholar
  17. 17.
    Puget S et al (2007) Pediatric craniopharyngiomas: classification and treatment according to the degree of hypothalamic involvement. J Neurosurg 106(1 Suppl):3–12PubMedGoogle Scholar
  18. 18.
    Moon SH et al (2005) Early adjuvant radiotherapy toward long-term survival and better quality of life for craniopharyngiomas--a study in single institute. Childs Nerv Syst 21(8–9):799–807CrossRefGoogle Scholar
  19. 19.
    Stripp DC et al (2004) Surgery with or without radiation therapy in the management of craniopharyngiomas in children and young adults. Int J Radiat Oncol Biol Phys 58(3):714–720CrossRefGoogle Scholar
  20. 20.
    Lamiman K et al (2016) A quantitative analysis of craniopharyngioma cyst expansion during and after radiation therapy and surgical implications. Neurosurg Focus 41(6):E15CrossRefGoogle Scholar
  21. 21.
    Jalali R et al (2005) High precision conformal radiotherapy employing conservative margins in childhood benign and low-grade brain tumours. Radiother Oncol 74(1):37–44CrossRefGoogle Scholar
  22. 22.
    Merchant TE et al (2006) Phase II trial of conformal radiation therapy for pediatric patients with craniopharyngioma and correlation of surgical factors and radiation dosimetry with change in cognitive function. J Neurosurg 104(2 Suppl):94–102PubMedGoogle Scholar
  23. 23.
    Schulz-Ertner D et al (2002) Fractionated stereotactic radiotherapy for craniopharyngiomas. Int J Radiat Oncol Biol Phys 54(4):1114–1120CrossRefGoogle Scholar
  24. 24.
    Merchant TE et al (2013) Disease control after reduced volume conformal and intensity modulated radiation therapy for childhood craniopharyngioma. Int J Radiat Oncol Biol Phys 85(4):e187–e192CrossRefGoogle Scholar
  25. 25.
    Greenfield BJ et al (2015) Long-term disease control and toxicity outcomes following surgery and intensity modulated radiation therapy (IMRT) in pediatric craniopharyngioma. Radiother Oncol 114(2):224–229CrossRefGoogle Scholar
  26. 26.
    Uto M et al (2016) Non-coplanar volumetric-modulated arc therapy (VMAT) for craniopharyngiomas reduces radiation doses to the bilateral hippocampus: a planning study comparing dynamic conformal arc therapy, coplanar VMAT, and non-coplanar VMAT. Radiat Oncol 11:86CrossRefGoogle Scholar
  27. 27.
    Fitzek MM et al (2006) Combined proton and photon irradiation for craniopharyngioma: long-term results of the early cohort of patients treated at Harvard cyclotron laboratory and Massachusetts General Hospital. Int J Radiat Oncol Biol Phys 64(5):1348–1354CrossRefGoogle Scholar
  28. 28.
    Luu QT et al (2006) Fractionated proton radiation treatment for pediatric craniopharyngioma: preliminary report. Cancer J 12(2):155–159PubMedGoogle Scholar
  29. 29.
    Eaton BR, Yock T (2014) The use of proton therapy in the treatment of benign or low-grade pediatric brain tumors. Cancer J 20(6):403–408CrossRefGoogle Scholar
  30. 30.
    Bishop AJ et al (2014) Proton beam therapy versus conformal photon radiation therapy for childhood craniopharyngioma: multi-institutional analysis of outcomes, cyst dynamics, and toxicity. Int J Radiat Oncol Biol Phys 90(2):354–361CrossRefGoogle Scholar
  31. 31.
    Baumert BG et al (2004) Dose conformation of intensity-modulated stereotactic photon beams, proton beams, and intensity-modulated proton beams for intracranial lesions. Int J Radiat Oncol Biol Phys 60(4):1314–1324CrossRefGoogle Scholar
  32. 32.
    Netson KL et al (2013) Longitudinal investigation of adaptive functioning following conformal irradiation for pediatric craniopharyngioma and low-grade glioma. Int J Radiat Oncol Biol Phys 85(5):1301–1306CrossRefGoogle Scholar
  33. 33.
    Beltran C, Naik M, Merchant TE (2010) Dosimetric effect of target expansion and setup uncertainty during radiation therapy in pediatric craniopharyngioma. Radiother Oncol 97(3):399–403CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Radiation OncologyMayo ClinicRochesterUSA

Personalised recommendations