Noncentral Nervous System Normal Structures

  • Natia EsiashviliEmail author
Part of the Practical Guides in Radiation Oncology book series (PGRO)


There are large number of pediatric tumors affecting the chest, abdomen, pelvis, and extremities. Often they involve a broad anatomical area with multiple vital organs in the tumor vicinity and create a major hurdle for a local control. When targeted with radiation therapy, safe dose delivery to the tumor target without damaging organs at risk can be very challenging especially when using higher doses in young children. There are multiple reports on functional impairments from radiation exposure resulting in acute and late toxicities. Chronic impairment of the heart, lungs, kidneys, liver, gastrointestinal tract, bladder, reproductive organs, etc. can result in not only poor quality of life but even contribute to the mortality of children undergoing cancer therapy. Correct identification of organs at risk and understanding of the volume and dose constraints are paramount in the pediatric radiotherapy field. The process of target and normal tissue delineation is the subject to significant levels of inter- and intra-observer variability in both the accuracy and reproducibility of structures [1–6]. In order to report, compare, and interpret the results of radiation treatment adequately, it is extremely important to delineate OARs according to well-defined uniform guidelines. Uncertainties associated with target volumes and organs-at-risk (OAR) definitions, organ motion, and patient set-up errors stand as obstacles to achieving better outcomes in radiotherapy planning and treatment delivery.


  1. 1.
    Louie AV, Rodrigues G, Olsthoorn J et al (2010) Inter-observer and intra-observer reliability for lung cancer target volume delineation in the 4D-CT era. Radiother Oncol 95:166–171CrossRefGoogle Scholar
  2. 2.
    Struikmans H, Warlam-Rodenhuis C, Stam T et al (2005) Interobserver variability of clinical target volume delineation of glandular breast tissue and of boost volume in tangential breast irradiation. Radiother Oncol 76:293–299CrossRefGoogle Scholar
  3. 3.
    Li XA, Tai A, Arthur DW et al (2009) Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG Multi-Institutional and Multiobserver Study. Int J Radiat Oncol Biol Phys 73:944–951CrossRefGoogle Scholar
  4. 4.
    Lawton CA, Michalski J, El-Naqa I et al (2009) Variation in the definition of clinical target volumes for pelvic nodal conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 74:377–382CrossRefGoogle Scholar
  5. 5.
    Hurkmans CW, Borger JH, Pieters BR et al (2001) Variability in target volume delineation on CT scans of the breast. Int J Radiat Oncol Biol Phys 50:1366–1372CrossRefGoogle Scholar
  6. 6.
    Allozi R, Li XA, White J et al (2010) Tools for consensus analysis of experts’ contours for radiotherapy structure definitions. Radiother Oncol 97:572–578CrossRefGoogle Scholar
  7. 7.
    Collier DC, Burnett SS, Amin M et al (2003) Assessment of consistency in contouring of normal-tissue anatomic structures. J Appl Clin Med Phys 4:17–24CrossRefGoogle Scholar
  8. 8.
    Saarnak AE, Boersma M, van Bunningen BN et al (2000) Inter-observer variation in delineation of bladder and rectum contours for brachytherapy of cervical cancer. Radiother Oncol 56:37–42CrossRefGoogle Scholar
  9. 9.
    Rodrigues G, Louie A, Videtic G et al (2012) Categorizing segmentation quality using a quantitative quality assurance algorithm. J Med Imaging Radiat Oncol 56:668–678CrossRefGoogle Scholar
  10. 10.
    Hwee J, Louie AV, Gaede S et al (2011) Technology assessment of automated atlas based segmentation in prostate bed contouring. Radiat Oncol 6:110CrossRefGoogle Scholar
  11. 11.
    Han X, Hoogeman MS, Levendag PC et al (2008) Atlas-based auto-segmentation of head and neck CT images. Med Image Comput Comput Assist Interv 11:434–441PubMedGoogle Scholar
  12. 12.
    Chao KS, Bhide S, Chen H et al (2007) Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach. Int J Radiat Oncol Biol Phys 68:1512–1521CrossRefGoogle Scholar
  13. 13.
    Anders LC, Stieler F, Siebenlist K et al (2012) Performance of an atlas-based autosegmentation software for delineation of target volumes for radiotherapy of breast and anorectal cancer. Radiother Oncol 102:68–73CrossRefGoogle Scholar
  14. 14.
    Simmat I, Georg P, Georg D et al (2012) Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions. Strahlenther Onkol 188:807–815CrossRefGoogle Scholar
  15. 15.
    Martin S, Rodrigues G, Patil N et al (2013) A multiphase validation of atlas-based automatic and semiautomatic segmentation strategies for prostate MRI. Int J Radiat Oncol Biol Phys 85:95–100CrossRefGoogle Scholar
  16. 16.
    Zhu M, Bzdusek K, Brink C et al (2013) Multi-institutional quantitative evaluation and clinical validation of smart probabilistic image contouring engine (SPICE) autosegmentation of target structures and normal tissues on computer tomography images in the head and neck, thorax, liver, and male pelvis areas. Int J Radiat Oncol Biol Phys 87:809–816CrossRefGoogle Scholar
  17. 17.
    van de Water TA, Bijl HP, Westerlaan HE et al (2009) Delineation guidelines for organs at risk involved in radiation-induced salivary dysfunction and xerostomia. Radiother Oncol 93:545–552CrossRefGoogle Scholar
  18. 18.
    Geets X, Daisne JF, Arcangeli S et al (2005) Inter-observer variability in the delineation of pharyngo-laryngeal tumor, parotid glands and cervical spinal cord: comparison between CT-scan and MRI. Radiother Oncol 77:25–31CrossRefGoogle Scholar
  19. 19.
    Eisbruch A, Kim HM, Terrell JE et al (2001) Xerostomia and its predictors following parotid-sparing irradiation of head-and-neck cancer. Int J Radiat Oncol Biol Phys 50:695–704CrossRefGoogle Scholar
  20. 20.
    Rouers M, Antoni D, Thompson A et al (2016) Maxillary and mandible contouring in patients with a head and neck area irradiation. Pract Radiat Oncol 6:e61–e72CrossRefGoogle Scholar
  21. 21.
    Otter S, Schick U, Gulliford S et al (2015) Evaluation of the risk of grade 3 oral and pharyngeal dysphagia using atlas-based method and multivariate analyses of individual patient dose distributions. Int J Radiat Oncol Biol Phys 93:507–515CrossRefGoogle Scholar
  22. 22.
    Bhide SA, Gulliford S, Schick U et al (2012) Dose-response analysis of acute oral mucositis and pharyngeal dysphagia in patients receiving induction chemotherapy followed by concomitant chemo-IMRT for head and neck cancer. Radiother Oncol 103:88–91CrossRefGoogle Scholar
  23. 23.
    Keall P (2004) 4-dimensional computed tomography imaging and treatment planning. Semin Radiat Oncol 14:81–90CrossRefGoogle Scholar
  24. 24.
    Keall PJ, Joshi S, Vedam SS et al (2005) Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med Phys 32:942–951CrossRefGoogle Scholar
  25. 25.
    Rietzel E, Chen GT, Choi NC et al (2005) Four-dimensional image-based treatment planning: target volume segmentation and dose calculation in the presence of respiratory motion. Int J Radiat Oncol Biol Phys 61:1535–1550CrossRefGoogle Scholar
  26. 26.
    Langen KM, Jones DT (2001) Organ motion and its management. Int J Radiat Oncol Biol Phys 50:265–278CrossRefGoogle Scholar
  27. 27.
    Seco J, Sharp GC, Wu Z et al (2008) Dosimetric impact of motion in free-breathing and gated lung radiotherapy: a 4D Monte Carlo study of intrafraction and interfraction effects. Med Phys 35:356–366CrossRefGoogle Scholar
  28. 28.
    Nieder C, Schill S, Kneschaurek P et al (2007) Influence of different treatment techniques on radiation dose to the LAD coronary artery. Radiat Oncol 2:20CrossRefGoogle Scholar
  29. 29.
    Vennarini S, Fournier-Bidoz N, Aristei C et al (2013) Visualisation of the left anterior descending coronary artery on CT images used for breast radiotherapy planning. Br J Radiol 86:20120643CrossRefGoogle Scholar
  30. 30.
    White BM, Vennarini S, Lin L et al (2015) Accuracy of routine treatment planning 4-dimensional and deep-inspiration breath-hold computed tomography delineation of the left anterior descending artery in radiation therapy. Int J Radiat Oncol Biol Phys 91:825–831CrossRefGoogle Scholar
  31. 31.
    Hall WH, Guiou M, Lee NY et al (2008) Development and validation of a standardized method for contouring the brachial plexus: preliminary dosimetric analysis among patients treated with IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys 72:1362–1367CrossRefGoogle Scholar
  32. 32.
    Kong FM, Ritter T, Quint DJ et al (2011) Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Int J Radiat Oncol Biol Phys 81:1442–1457CrossRefGoogle Scholar
  33. 33.
    Brandner ED, Wu A, Chen H et al (2006) Abdominal organ motion measured using 4D CT. Int J Radiat Oncol Biol Phys 65:554–560CrossRefGoogle Scholar
  34. 34.
    Pai Panandiker AS, Sharma S, Naik MH et al (2012) Novel assessment of renal motion in children as measured via four-dimensional computed tomography. Int J Radiat Oncol Biol Phys 82:1771–1776CrossRefGoogle Scholar
  35. 35.
    Huijskens SC, van Dijk IW, de Jong R et al (2015) Quantification of renal and diaphragmatic interfractional motion in pediatric image-guided radiation therapy: a multicenter study. Radiother Oncol 117:425–431CrossRefGoogle Scholar
  36. 36.
    Yamashita H, Yamashita M, Futaguchi M et al (2014) Individually wide range of renal motion evaluated by four-dimensional computed tomography. Springerplus 3:131CrossRefGoogle Scholar
  37. 37.
    Gawthrop JB, Gill S (2012) The use of respiratory-correlated four-dimensional CT where kidney motion has the potential to impact upon the radiotherapy planning process. J Med Imaging Radiat Oncol 56:689–695CrossRefGoogle Scholar
  38. 38.
    Nazmy MS, Khafaga Y, Mousa A et al (2012) Cone beam CT for organs motion evaluation in pediatric abdominal neuroblastoma. Radiother Oncol 102:388–392CrossRefGoogle Scholar
  39. 39.
    Chopra S, Krishnatry R, Dora T et al (2015) Predictors of late bowel toxicity using three different methods of contouring in patients undergoing post-operative radiation for cervical cancer. Br J Radiol 88:20150054CrossRefGoogle Scholar
  40. 40.
    Isohashi F, Yoshioka Y, Mabuchi S et al (2013) Dose-volume histogram predictors of chronic gastrointestinal complications after radical hysterectomy and postoperative concurrent nedaplatin-based chemoradiation therapy for early-stage cervical cancer. Int J Radiat Oncol Biol Phys 85:728–734CrossRefGoogle Scholar
  41. 41.
    Kataria T, Gupta D, Basu T et al (2016) Simple diagrammatic approach to delineate duodenum on a radiotherapy planning CT scan. Br J Radiol 89:20150661CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Radiation Oncology DepartmentWinship Cancer Institute, Emory UniversityAtlantaUSA

Personalised recommendations