Advertisement

Broadcast Encryption with Both Temporary and Permanent Revocation

  • Dan Brownstein
  • Shlomi Dolev
  • Niv Gilboa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10616)

Abstract

Broadcast encryption enables a sender to broadcast data that only an authorized set of users can decrypt and is therefore an essential component of secure content distribution. Public key broadcast encryption separates the roles of a key manager who provides keys to users and content providers who distribute content to users. This separation is useful for flexible content distribution and for simplifying the process of additional content providers joining the network. A content provider or key manager can control the authorized set of users by user revocation which has two types, temporary revocation and permanent revocation. A content provider sending a message can determine the set of users authorized for the message by using temporary revocation. A key manager can use permanent revocation to remove a user from the set of authorized users as a better alternative to temporarily revoking the user in all subsequent messages. In this paper we present the first public-key, broadcast encryption scheme that achieves both temporary and permanent revocation and has essentially the same performance as state of the art schemes that achieve only one of the two types of revocation. The scheme combines and optimizes the broadcast encryption systems of Delerablée et al. (Pairing 2007) and Lewko et al. (Security and Privacy 2010) and is generically secure over groups that support bilinear maps.

References

  1. [BBG05]
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. IACR Cryptology ePrint Archive 2005:15 (2005)Google Scholar
  2. [BGW05]
    Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). doi: 10.1007/11535218_16CrossRefGoogle Scholar
  3. [CGI+99]
    Canetti, R., Garay, J.A., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast security: a taxonomy and some efficient constructions. In: INFOCOM, pp. 708–716. IEEE (1999)Google Scholar
  4. [CMN99]
    Canetti, R., Malkin, T., Nissim, K.: Efficient communication-storage tradeoffs for multicast encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 459–474. Springer, Heidelberg (1999). doi: 10.1007/3-540-48910-X_32CrossRefGoogle Scholar
  5. [DF02]
    Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-44993-5_5CrossRefGoogle Scholar
  6. [DP08]
    Delerablée, C., Pointcheval, D.: Dynamic threshold public-key encryption. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 317–334. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85174-5_18CrossRefGoogle Scholar
  7. [DPP07]
    Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broadcast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T., Okamoto, E., Okamoto, T., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 39–59. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73489-5_4CrossRefGoogle Scholar
  8. [FN93]
    Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). doi: 10.1007/3-540-48329-2_40CrossRefGoogle Scholar
  9. [GST04]
    Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation in groups of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 511–527. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28628-8_31CrossRefGoogle Scholar
  10. [GSW00]
    Garay, J.A., Staddon, J., Wool, A.: Long-lived broadcast encryption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 333–352. Springer, Heidelberg (2000). doi: 10.1007/3-540-44598-6_21CrossRefGoogle Scholar
  11. [GW09]
    Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 171–188. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01001-9_10CrossRefzbMATHGoogle Scholar
  12. [LSW10]
    Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small private keys. In: IEEE Symposium on Security and Privacy, pp. 273–285. IEEE Computer Society (2010)Google Scholar
  13. [NNL01]
    Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001). doi: 10.1007/3-540-44647-8_3CrossRefGoogle Scholar
  14. [NP10]
    Naor, M., Pinkas, B.: Efficient trace and revoke schemes. Int. J. Inf. Secur. 9(6), 411–424 (2010)CrossRefGoogle Scholar
  15. [Sho97]
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). doi: 10.1007/3-540-69053-0_18CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceBen-Gurion University of the NegevBeershebaIsrael
  2. 2.Department of Communication Systems EngineeringBen-Gurion University of the NegevBeershebaIsrael

Personalised recommendations