Advertisement

Brief Announcement: A Self-stabilizing Algorithm for the Minimal Generalized Dominating Set Problem

  • Hisaki Kobayashi
  • Hirotsugu Kakugawa
  • Toshimitsu Masuzawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10616)

Abstract

A dominating set in a distributed system is a set of nodes such that each node is contained in the set or has at least one neighbor in the set.

References

  1. 1.
    Herman, T., Ghosh, S.: Stabilizing phase-clocks. Inf. Proc. Lett. 5(6), 259–265 (1995)CrossRefGoogle Scholar
  2. 2.
    Xu, Z., Hedetniemi, S.T., Goddard, W., Srimani, P.K.: A synchronous selfstabilizing minimal domination protocol in an arbitrary network graph. In: Proceedings of the Fifth International Workshop on Distributed Computing, pp. 26–32 (2003)CrossRefGoogle Scholar
  3. 3.
    Chiu, W.Y., Chen, C., Tsai, S.Y.: A \(4n\)-move self-stabilizing algorithm for the minimal dominating set problem using an unfair distributed daemon. Inf. Proc. Lett. 114(5), 515–518 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kamei, S., Kakugawa, H.: A self-stabilizing algorithm for the distributed minimal \(k\)-redundant dominating set problem in tree network. In: Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pp. 720–724 (2003)Google Scholar
  5. 5.
    Kamei, S., Kakugawa, H.: A self-stabilizing approximation algorithm for the distributed minimum \(k\)-domination. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E88–A(5), 1109–1116 (2005)CrossRefGoogle Scholar
  6. 6.
    Wang, G., Wang, H., Tao, X., Zhang, J.: A self-stabilizing algorithm for finding a minimal k-dominating set in general networks. In: Xiang, Y., Pathan, M., Tao, X., Wang, H. (eds.) ICDKE 2012. LNCS, vol. 7696, pp. 74–85. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34679-8_8CrossRefGoogle Scholar
  7. 7.
    Wang, G., Wang, H., Tao, X., Zhang, J., Zhang, J.: Minimising k-dominating set in arbitrary network graphs. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013. LNCS, vol. 8347, pp. 120–132. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-53917-6_11CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hisaki Kobayashi
    • 1
  • Hirotsugu Kakugawa
    • 1
  • Toshimitsu Masuzawa
    • 1
  1. 1.Graduate School of Information Science and TechnologyOsaka UniversityOsakaJapan

Personalised recommendations