Advertisement

Universally Optimal Gathering Under Limited Visibility

  • Pavan Poudel
  • Gokarna Sharma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10616)

Abstract

We consider the distributed setting of N autonomous mobile robots that operate in Look-Compute-Move (LCM) cycles following the well-celebrated classic oblivious robots model. We study the fundamental problem of gathering N autonomous robots on a plane, which requires all robots to meet at a single point (or to position within a small area) that is not known beforehand. We consider limited visibility under which robots are only able to see other robots up to a constant Euclidean distance and focus on the time complexity of gathering by robots under limited visibility. There exists an \(\mathcal{O}(D_G)\) time algorithm for this problem in the fully synchronous setting, assuming that the robots agree on one coordinate axis (say North), where \(D_G\) is the diameter of the visibility graph of the initial configuration. In this paper, we provide the first \(\mathcal{O}(D_E)\) time algorithm for this problem in the asynchronous setting under the same assumption of robots agreement on one coordinate axis, where \(D_E\) is the Euclidean distance between farthest-pair of robots in the initial configuration. The runtime of our algorithm is a significant improvement since, for any initial configuration of \(N\ge 1\) robots, \(D_E\le D_G\), and, there exist initial configurations for which \(D_G\) can be as much as quadratic on \(D_E\), i.e., \(D_G=\varTheta (D_E^2)\). Moreover, our algorithm is universally (time) optimal since the trivial time lower bound for this problem is \(\varOmega (D_E)\).

Notes

Acknowledgements

We thank Costas Busch for introducing us this problem.

References

  1. 1.
    Agathangelou, C. Georgiou, C., Mavronicolas, M.: A distributed algorithm for gathering many fat mobile robots in the plane. In: PODC, pp. 250–259 (2013)Google Scholar
  2. 2.
    Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for synchronous mobile robots with limited visibility. In: ISIC, pp. 453–460 (1995)Google Scholar
  3. 3.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003). doi: 10.1007/3-540-45061-0_90CrossRefGoogle Scholar
  4. 4.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cord-Landwehr, A., et al.: Collisionless gathering of robots with an extent. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 178–189. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-18381-2_15CrossRefGoogle Scholar
  7. 7.
    Cord-Landwehr, A., et al.: A new approach for analyzing convergence algorithms for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22012-8_52CrossRefGoogle Scholar
  8. 8.
    Cord-Landwehr, A., Fischer, M., Jung, D., Meyer auf der Heide, F.: Asymptotically optimal gathering on a grid. In: SPAA, pp. 301–312 (2016)Google Scholar
  9. 9.
    D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on anonymous grids without multiplicity detection. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 327–338. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31104-8_28CrossRefGoogle Scholar
  10. 10.
    Degener, B., Kempkes, B., Langner, T. , Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: SPAA, pp. 139–148 (2011)Google Scholar
  11. 11.
    Degener, B. Kempkes, B., Meyer auf der Heide, F.: A local o(n\(^{2}\)) gathering algorithm. In: SPAA, pp. 217–223 (2010)Google Scholar
  12. 12.
    Di Stefano, G., Navarra, A.: Optimal gathering on infinite grids. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 211–225. Springer, Cham (2014). doi: 10.1007/978-3-319-11764-5_15CrossRefGoogle Scholar
  13. 13.
    Di Stefano, G., Navarra, A.: Optimal gathering of oblivious robots in anonymous graphs and its application on trees and rings. Distrib. Comput. 30(2), 75–86 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fischer, M., Jung, D., Meyer auf der Heide, F.: Gathering anonymous, oblivious robots on a grid. CoRR, abs/1702.03400 (2017)CrossRefGoogle Scholar
  15. 15.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile robots. Synth. Lect. Distrib. Comput. Theory 3(2), 1–185 (2012)CrossRefGoogle Scholar
  16. 16.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Izumi, T., Kawabata, Y., Kitamura, N.: Toward time-optimal gathering for limited visibility model (2015). https://sites.google.com/site/micromacfrance/abstract-tasuke
  18. 18.
    Kempkes, B., Kling, P., Meyer auf der Heide, F. Optimal and competitive runtime bounds for continuous, local gathering of mobile robots. In: SPAA, pp. 18–26 (2012)Google Scholar
  19. 19.
    Lukovszki, T., Meyer auf der Heide, F.: Fast collisionless pattern formation by anonymous, position-aware robots. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol. 8878, pp. 248–262. Springer, Cham (2014). doi: 10.1007/978-3-319-14472-6_17CrossRefGoogle Scholar
  20. 20.
    Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Prencipe, G.: Autonomous mobile robots: a distributed computing perspective. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 6–21. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-45346-5_2CrossRefGoogle Scholar
  22. 22.
    Sharma, G., Busch, C., Mukhopadhyay, S., Malveaux, C.: Tight analysis of a collisionless robot gathering algorithm. ACM Trans. Auton. Adapt. Syst. 12(1), 3:1–3:20 (2017)CrossRefGoogle Scholar
  23. 23.
    Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 333–349. Springer, Heidelberg (2006). doi: 10.1007/11945529_24CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceKent State UniversityKentUSA

Personalised recommendations