Advertisement

Self-stabilizing Rendezvous of Synchronous Mobile Agents in Graphs

  • Fukuhito Ooshita
  • Ajoy K. Datta
  • Toshimitsu Masuzawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10616)

Abstract

We investigate self-stabilizing rendezvous algorithms for two synchronous mobile agents. The rendezvous algorithms make two mobile agents meet at a single node, starting from arbitrary initial locations and arbitrary initial states. We study deterministic algorithms for two synchronous mobile agents with different labels but without using any whiteboard in the graph. First, we show the existence of a self-stabilizing rendezvous algorithm for arbitrary graphs by providing a scheme to transform a non-stabilizing algorithm to a self-stabilizing one. However, the time complexity of the resultant algorithm is not bounded by any function of the graph size and labels. This raises the question whether there exist polynomial-time self-stabilizing rendezvous algorithms. We give partial answers to this question. We give polynomial-time self-stabilizing rendezvous algorithms for trees and rings.

Keywords

Mobile agents Self-stabilization Rendezvous Gathering 

References

  1. 1.
    Blin, L., Potop-Butucaru, M.G., Tixeuil, S.: On the self-stabilization of mobile robots in graphs. In: Proceedings of 15th International Conference on Principles of Distributed systems, pp. 301–314 (2007)Google Scholar
  2. 2.
    Bouchard, S., Dieudonné, Y., Ducourthial, B.: Byzantine gathering in networks. Distrib. Comput. 29(6), 435–457 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chalopin, J., Dieudonné, Y., Labourel, A., Pelc, A.: Rendezvous in networks in spite of delay faults. Distrib. Comput. 29, 187–205 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space rendezvous in arbitrary graphs. Distrib. Comput. 25(2), 165–178 (2012)CrossRefGoogle Scholar
  5. 5.
    Czyzowicz, J., Kosowski, A., Pelc, A.: Time versus space trade-offs for rendezvous in trees. Distrib. Comput. 27(2), 95–109 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering and exclusive searching on rings under weak assumptions. Distrib. Comput. 30(1), 17–48 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    D’Angelo, G., Stefano, G.D., Navarra, A.: Gathering on rings under the look-compute-move model. Distrib. Comput. 27(4), 255–285 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Tran. Algorithms 11(1), 1:1–1:28 (2014)MathSciNetGoogle Scholar
  10. 10.
    Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detection. Theoret. Comput. Sci. 428, 47–57 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)CrossRefGoogle Scholar
  12. 12.
    Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous in trees. ACM Trans. Algorithms 9(2), 17:1–17:24 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theoret. Comput. Sci. 390, 27–39 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. Theoret. Comput. Sci. 399, 141–156 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Masuzawa, T., Tixeuil, S.: Quiescence of self-stabilizing gossiping among mobile agents in graphs. Theoret. Comput. Sci. 411(14–15), 1567–1582 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks 59, 331–347 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Pelc, A.: Deterministic gathering with crash faults. CoRR abs/1704.08880 (2017). http://arxiv.org/abs/1704.08880
  18. 18.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly universal exploration sequences. ACM Trans. Algorithms 10(3), 12:1–12:15 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tsuchida, M., Ooshita, F., Inoue, M.: Byzantine gathering in networks with authenticated whiteboards. In: Proceedings of 11th International Conference and Workshops on Algorithms and Computation, pp. 106–118 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fukuhito Ooshita
    • 1
  • Ajoy K. Datta
    • 2
  • Toshimitsu Masuzawa
    • 3
  1. 1.Graduate School of Information ScienceNara Institute of Science and TechnologyIkomaJapan
  2. 2.Department of Computer ScienceUniversity of NevadaLas VegasUSA
  3. 3.Graduate School of Information Science and TechnologyOsaka UniversitySuitaJapan

Personalised recommendations