Advertisement

On Security Analysis of Proof-of-Elapsed-Time (PoET)

  • Lin Chen
  • Lei Xu
  • Nolan Shah
  • Zhimin Gao
  • Yang Lu
  • Weidong Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10616)

Abstract

As more applications are built on top of blockchain and public ledger, different approaches are developed to improve the performance of blockchain construction. Recently Intel proposed a new concept of proof-of-elapsed-time (PoET), which leverages trusted computing to enforce random waiting times for block construction. However, trusted computing component may not be perfect and 100% reliable. It is not clear, to what extent, blockchain systems based on PoET can tolerate failures of trusted computing component. The current design of PoET lacks rigorous security analysis and a theoretical foundation for assessing its strength against such attacks. To fulfill this gap, we develop a theoretical framework for evaluating a PoET based blockchain system, and show that the current design is vulnerable in the sense that adversary can jeopardize the blockchain system by only compromising \(\varTheta (\log \log n/\log n)\) fraction of the participating nodes, which is very small when n is relatively large. Based on our theoretical analysis, we also propose methods to mitigate these vulnerabilities.

Notes

Acknowledgement

This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number 113039. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.

References

  1. 1.
    Intel Software Guard Extensions Programming Reference, October 2014. https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
  2. 2.
    ARM: ARM security technology building a secure system using trustzone technology (2009)Google Scholar
  3. 3.
    Berry, A.C.: The accuracy of the gaussian approximation to the sum of independent variates. Trans. Am. Math. Soc. 49(1), 122–136 (1941)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM (JACM) 51(4), 557–594 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, L., Xu, L., Shah, N., Diallo, N., Gao, Z., Lu, Y., Shi, W.: Unraveling blockchain based crypto-currency system supporting oblivious transactions: a formalized approach. In: Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts, pp. 23–28 (2017)Google Scholar
  6. 6.
    Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., Shi, W.: Decentralized execution of smart contracts: agent model perspective and its implications (2017)CrossRefGoogle Scholar
  7. 7.
    Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., Shi, W.: On security analysis of proof-of-elapsed-time (PoET) (full version) (2017). http://i2c.cs.uh.edu/tiki-download_wiki_attachment.php?attId=70&download=yGoogle Scholar
  8. 8.
    Courtois, N.T., Emirdag, P., Nagy, D.A.: Could bitcoin transactions be 100x faster? In: 2014 11th International Conference on Security and Cryptography (SECRYPT), pp. 1–6. IEEE (2014)Google Scholar
  9. 9.
    Kaplan, D., Powell, J., Woller, T.: AMD memory encryption. Whitepaper, April 2016Google Scholar
  10. 10.
    Duembgen, L.: Bounding standard Gaussian tail probabilities. arXiv preprint arXiv:1012.2063 (2010)
  11. 11.
    Duong, T., Fan, L., Zhou, H.S.: 2-hop blockchain: combining proof-of-work and proof-of-stake securely (2016)Google Scholar
  12. 12.
    Esseen, C.G.: On the Liapounoff Limit of Error in the Theory of Probability. Almqvist & Wiksell, Stockholm (1942)MATHGoogle Scholar
  13. 13.
    Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable blockchain protocol. In: 13th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2016, pp. 45–59 (2016)Google Scholar
  14. 14.
    Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45472-5_28CrossRefGoogle Scholar
  15. 15.
    Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46803-6_10CrossRefGoogle Scholar
  16. 16.
    Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On the security and performance of proof of work blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 3–16. ACM (2016)Google Scholar
  17. 17.
    Gordon, R.D.: Values of Mills’ ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. Ann. Math. Stat. 12(3), 364–366 (1941)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Götzfried, J., Eckert, M., Schinzel, S., Müller, T.: Cache attacks on Intel SGX. In: Proceedings of the 10th European Workshop on Systems Security, p. 2. ACM (2017)Google Scholar
  19. 19.
    Intel: Sawtooth Lake (2017). https://intelledger.github.io/
  20. 20.
    Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining games. In: Proceedings of the 2016 ACM Conference on Economics and Computation, pp. 365–382. ACM (2016)Google Scholar
  21. 21.
    Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. Technical report, Cryptology ePrint Archive, Report 2016/889 (2016). http://eprint.iacr.org/2016/889
  22. 22.
    Lawley, D.: A generalization of Fisher’s z test. Biometrika 30(1/2), 180–187 (1938)CrossRefGoogle Scholar
  23. 23.
    Lee, J., Jang, J., Jang, Y., Kwak, N., Choi, Y., Choi, C., Kim, T., Peinado, M., Kang, B.B.: Hacking in darkness: return-oriented programming against secure enclaves. In: USENIX Security (2017)Google Scholar
  24. 24.
    Luu, L., Narayanan, V., Baweja, K., Zheng, C., Gilbert, S., Saxena, P.: SCP: a computationally-scalable byzantine consensus protocol for blockchains. Technical report, Cryptology ePrint Archive, Report 2015/1168 (2015)Google Scholar
  25. 25.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  26. 26.
    Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. IACR Cryptol. ePrint Arch. 2016, 454 (2016)MATHGoogle Scholar
  27. 27.
    Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in bitcoin. arXiv preprint arXiv:1507.06183 (2015)
  28. 28.
    Tapscott, D., Tapscott, A.: Blockchain Revolution: How the Technology Behind Bitcoin is Changing Money, Business, and the World. Penguin, City of Westminster (2016)Google Scholar
  29. 29.
    Tyurin, I.S.: An improvement of upper estimates of the constants in the Lyapunov theorem. Russ. Math. Surv. 65(3), 201–202 (2010)CrossRefGoogle Scholar
  30. 30.
    Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT replication. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp. 112–125. Springer, Cham (2016). doi: 10.1007/978-3-319-39028-4_9CrossRefGoogle Scholar
  31. 31.
    Weichbrodt, N., Kurmus, A., Pietzuch, P., Kapitza, R.: AsyncShock: exploiting synchronisation bugs in intel SGX enclaves. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 440–457. Springer, Cham (2016). doi: 10.1007/978-3-319-45744-4_22CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lin Chen
    • 1
  • Lei Xu
    • 1
  • Nolan Shah
    • 1
  • Zhimin Gao
    • 1
  • Yang Lu
    • 1
  • Weidong Shi
    • 1
  1. 1.Department of Computer ScienceUniversity of HoustonHoustonUSA

Personalised recommendations