Robust Routing Made Easy

  • Christoph Lenzen
  • Moti MedinaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10616)


Designing routing schemes is a multidimensional and complex task that depends on the objective function, the computational model (centralized vs. distributed), and the amount of uncertainty (online vs. offline). We showcase simple and generic transformations that can be used as a blackbox to increase resilience against (independently distributed) faults. Given a network and a routing scheme, we determine a reinforced network and corresponding routing scheme that faithfully preserves the specification and behavior of the original scheme. We show that reasonably small constant overheads in terms of size of the new network compared to the old one are sufficient for substantially relaxing the reliability requirements on individual components. The main message in this paper is that the task of designing a robust routing scheme can be decoupled into (i) designing a routing scheme that meets the specification in a fault-free environment, (ii) ensuring that nodes correspond to fault-containment regions, i.e., fail (approximately) independently, and (iii) applying our transformation to obtain a reinforced network and a robust routing scheme that is fault-tolerant.


  1. 1.
    Aiello, W., Kushilevitz, E., Ostrovsky, R., Rosén, A.: Dynamic routing on networks with fixed-size buffers. In: SODA, pp. 771–780 (2003)Google Scholar
  2. 2.
    Alon, N., Seymour, P., Thomas, R.: A separator theorem for graphs with an excluded minor and its applications. In: STOC, pp. 293–299. ACM (1990)Google Scholar
  3. 3.
    Angelov, S., Khanna, S., Kunal, K.: The network as a storage device: dynamic routing with bounded buffers. Algorithmica 55(1), 71–94 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cho, H., Leem, L., Mitra, S.: ERSA: error resilient system architecture for probabilistic applications. Trans. Comput.-Aided Des. Integr. Circ. Syst. 31(4), 546–558 (2012)CrossRefGoogle Scholar
  5. 5.
    Dolev, D., Hoch, E.N.: Constant-space localized byzantine consensus. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 167–181. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-87779-0_12CrossRefGoogle Scholar
  6. 6.
    Even, G., Medina, M., Patt-Shamir, B.: Better deterministic online packet routing on grids. In: SPAA, pp. 284–293 (2015)Google Scholar
  7. 7.
    Even, G., Medina, M., Rosén, A.: A constant approximation algorithm for scheduling packets on line networks. In: ESA, pp. 40:1–40:16 (2016)Google Scholar
  8. 8.
    Fischer, M., Lynch, N., Paterson, N.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kang, Y.H., Kwon, T., Draper, J.: Fault-tolerant flow control in on-chip networks. In: NOCS, pp. 79–86 (2010)Google Scholar
  10. 10.
    Kopetz, H.: Fault containment and error detection in the time-triggered architecture. In: ISADS, pp. 139–146 (2003)Google Scholar
  11. 11.
    Levi, R., Ron, D.: A quasi-polynomial time partition oracle for graphs with an excluded minor. ACM Trans. Algorithms 11(3), 24:1–24:13 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Park, D., Nicopoulos, C., Kim, J., Vijaykrishnan, N., Das, C.R.: Exploring fault-tolerant network-on-chip architectures. In: DSN, pp. 93–104 (2006)Google Scholar
  13. 13.
    Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Inf. Process. Lett. 93(3), 109–115 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Räcke, H.: Survey on oblivious routing strategies. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 419–429. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03073-4_43CrossRefGoogle Scholar
  15. 15.
    Räcke, H., Rosén, A.: Approximation algorithms for time-constrained scheduling on line networks. Theory Comput. Syst. 49(4), 834–856 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rotem-Gal-Oz, A.: Fallacies of Distributed Computing Explained.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.MPIISaarbrückenGermany

Personalised recommendations