Relaxed Data Types as Consistency Conditions

  • Edward TalmageEmail author
  • Jennifer L. WelchEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10616)


In the quest for higher-performance shared data structures, weakening consistency conditions and relaxing the sequential specifications of data types are two of the primary tools available in the literature today. In this paper, we show that these two approaches are in many cases different ways to specify the same sets of allowed concurrent behaviors of a given shared data object. This equivalence allows us to use whichever description is clearer, simpler, or easier to achieve equivalent guarantees. Specifically, for three common data type relaxations, we define consistency conditions such that the combination of the new consistency condition and an unrelaxed type allows the same behaviors as linearizability and the relaxed version of the data type. Conversely, for the consistency condition k-Atomicity, we define a new data type relaxation such that the behaviors allowed by the relaxed version of a data type, combined with linearizability, are the same as those allowed by k-Atomicity and the original type. As an example of the possibilities opened by our new equivalence, we use standard techniques from the literature on consistency conditions to prove that the three data type relaxations we consider are not comparable to one another or to several similar known conditions. Finally, we show a particular class of data types where one of our newly-defined consistency conditions is stronger than a known consistency condition.


  1. 1.
    Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: relaxed consistency for improved concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 395–410. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17653-1_29CrossRefGoogle Scholar
  2. 2.
    Aiyer, A., Alvisi, L., Bazzi, R.A.: On the availability of non-strict quorum systems. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 48–62. Springer, Heidelberg (2005). doi: 10.1007/11561927_6CrossRefGoogle Scholar
  3. 3.
    Alistarh, D., Kopinsky, J., Li, J., Shavit, N.: The spraylist: a scalable relaxed priority queue. In: Cohen and Grove [9], pp. 11–20CrossRefGoogle Scholar
  4. 4.
    Attiya, H., Friedman, R.: A correctness condition for high-performance multiprocessors. SIAM J. Comput. 27(6), 1637–1670 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P., Michael, M.M., Vechev, M.T.: Laws of order: expensive synchronization in concurrent algorithms cannot be eliminated. In: Ball, T., Sagiv, M. (eds.) POPL, pp. 487–498. ACM, New York (2011)Google Scholar
  6. 6.
    Attiya, H., Welch, J.L.: Sequential consistency versus linearizability. ACM Trans. Comput. Syst. 12(2), 91–122 (1994)CrossRefGoogle Scholar
  7. 7.
    Bermbach, D., Kuhlenkamp, J.: Consistency in distributed storage systems. In: Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 175–189. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40148-0_13CrossRefGoogle Scholar
  8. 8.
    Castañeda, A., Rajsbaum, S., Raynal, M.: Specifying concurrent problems: beyond linearizability and up to tasks. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 420–435. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48653-5_28CrossRefGoogle Scholar
  9. 9.
    Cohen, A., Grove, D. (eds): Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOP 2015, San Francisco, CA, USA, 7–11 February 2015. ACM (2015)Google Scholar
  10. 10.
    Friedman, R., Vitenberg, R., Chockler, G.V.: On the composability of consistency conditions. Inf. Process. Lett. 86(4), 169–176 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hemed, N., Rinetzky, N.: Brief announcement: concurrency-aware linearizability. In: Halldórsson, M.M., Dolev, S. (eds) ACM Symposium on Principles of Distributed Computing, PODC 2014, Paris, France, 15–18 July 2014, pp. 209–211. ACM (2014)Google Scholar
  12. 12.
    Hemed, N., Rinetzky, N., Vafeiadis, V.: Modular verification of concurrency-aware linearizability. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 371–387. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48653-5_25CrossRefGoogle Scholar
  13. 13.
    Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative relaxation of concurrent data structures. In: Giacobazzi, R., Cousot, R. (eds) The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013, Rome, Italy, 23–25 January 2013, pp. 317–328. ACM (2013)Google Scholar
  14. 14.
    Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)CrossRefGoogle Scholar
  15. 15.
    Kirsch, C.M., Lippautz, M., Payer, H.: Fast and scalable k-FIFO queues. Technical report 2012–04, Department of Computer Sciences, University of Salzburg June 2012Google Scholar
  16. 16.
    Kosa, M.J.: Time bounds for strong and hybrid consistency for arbitrary abstract data types. Chicago J. Theor. Comput. Sci. 1999, paper 9, (1999)Google Scholar
  17. 17.
    Lamport, L.: On interprocess communication. part II: algorithms. Distrib. Comput. 1(2), 86–101 (1986)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lipton, R.J., Sandberg, J.S.: PRAM: a scalable shared memory. Technical report CS-TR-180-88, Department of Computer Science, Princeton University, September 1988Google Scholar
  19. 19.
    Moses, Y. (ed.): DISC 2015. LNCS, vol. 9363. Springer, Heidelberg (2015)zbMATHGoogle Scholar
  20. 20.
    Neiger, G.: Set-linearizability. In: Anderson, J.H., Peleg, D., Borowsky, E. (eds) Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed Computing, Los Angeles, California, USA, 14–17 August 1994, p. 396. ACM (1994)Google Scholar
  21. 21.
    Rihani, H., Sanders, P., Dementiev, R.: Brief announcement: multiqueues: simple relaxed concurrent priority queues. In: Blelloch, G.E., Agrawal, K. (eds) Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, 13–15 June 2015, pp. 80–82. ACM (2015)Google Scholar
  22. 22.
    Shao, C., Welch, J.L., Pierce, E., Lee, H.: Multiwriter consistency conditions for shared memory registers. SIAM J. Comput. 40(1), 28–62 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 386–400. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24550-3_29CrossRefzbMATHGoogle Scholar
  24. 24.
    Shavit, N., Taubenfeld, G.: The computability of relaxed data structures: queues and stacks as examples. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 414–428. Springer, Cham (2015). doi: 10.1007/978-3-319-25258-2_29CrossRefzbMATHGoogle Scholar
  25. 25.
    Talmage, E., Welch, J.L.: Improving average performance by relaxing distributed data structures. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 421–438. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45174-8_29CrossRefGoogle Scholar
  26. 26.
    Talmage, E., Welch, J.L.: Anomalies and similarities among consensus numbers of variously-relaxed queues. In: El Abbadi, A., Garbinato, B. (eds.) NETYS 2017. LNCS, vol. 10299, pp. 191–205. Springer, Cham (2017). doi: 10.1007/978-3-319-59647-1_15CrossRefGoogle Scholar
  27. 27.
    Viotti, P., Vukolic, M.: Consistency in non-transactional distributed storage systems. ACM Comput. Surv. 49(1), 19:1–19:34 (2016)CrossRefGoogle Scholar
  28. 28.
    Vitenberg, R., Friedman, R.: On the locality of consistency conditions. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 92–105. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-39989-6_7CrossRefGoogle Scholar
  29. 29.
    Wang, J., Talmage, E., Lee, H., Welch, J.L.: Improved time bounds for linearizable implementations of abstract data types. In: 2014 IEEE 28th International Parallel and Distributed Processing Symposium, Phoenix, AZ, USA, 19–23 May 2014, pp. 691–701. IEEE Computer Society (2014)Google Scholar
  30. 30.
    Wimmer, M., Gruber, J., Träff, J.L., Tsigas, P.: The lock-free k-LSM relaxed priority queue. In: Cohen and Grove [9], pp. 277–278 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations