Proof-Labeling Schemes: Broadcast, Unicast and in Between

  • Boaz Patt-Shamir
  • Mor PerryEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10616)


We study the effect of limiting the number of different messages a node can transmit simultaneously on the verification complexity of proof-labeling schemes (PLS). In a PLS, each node is given a label, and the goal is to verify, by exchanging messages over each link in each direction, that a certain global predicate is satisfied by the system configuration. We consider a single parameter r that bounds the number of distinct messages that can be sent concurrently by any node: in the case \(r=1\), each node may only send the same message to all its neighbors (the broadcast model), in the case \(r\ge \varDelta \), where \(\varDelta \) is the largest node degree in the system, each neighbor may be sent a distinct message (the unicast model), and in general, for \(1\le r\le \varDelta \), each of the r messages is destined to a subset of the neighbors.

We show that message compression linear in r is possible for verifying fundamental problems such as the agreement between edge endpoints on the edge state. Some problems, including verification of maximal matching, exhibit a large gap in complexity between \(r=1\) and \(r>1\). For some other important predicates, the verification complexity is insensitive to r, e.g., the question whether a subset of edges constitutes a spanning-tree. We also consider the congested clique model. We show that the crossing technique [5] for proving lower bounds on the verification complexity can be applied in the case of congested clique only if \(r=1\). Together with a new upper bound, this allows us to determine the verification complexity of MST in the broadcast clique.


Verification complexity Proof-labeling schemes CONGEST model Congested clique 


  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Engelwood Cliffs (1993)zbMATHGoogle Scholar
  2. 2.
    Arfaoui, H., Fraigniaud, P., Ilcinkas, D., Mathieu, F.: Distributedly testing cycle-freeness. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 15–28. Springer, Cham (2014). doi: 10.1007/978-3-319-12340-0_2CrossRefGoogle Scholar
  3. 3.
    Arfaoui, H., Fraigniaud, P., Pelc, A.: Local decision and verification with bounded-size outputs. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 133–147. Springer, Cham (2013). doi: 10.1007/978-3-319-03089-0_10CrossRefGoogle Scholar
  4. 4.
    Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking and correction. In: 32nd Symposium on Foundations of Computer Science (FOCS), pp. 268–277. IEEE (1991)Google Scholar
  5. 5.
    Baruch, M., Fraigniaud, P., Patt-Shamir, B.: Randomized proof-labeling schemes. In: Proceedings of 34th ACM Symposium on Principles of Distributed Computing (PODC), pp. 315–324 (2015)Google Scholar
  6. 6.
    Becker, F., Anta, A.F., Rapaport, I., Rémila, E.: The effect of range and bandwidth on the round complexity in the congested clique model. In: Dinh, T.N., Thai, M.T. (eds.) COCOON 2016. LNCS, vol. 9797, pp. 182–193. Springer, Cham (2016). doi: 10.1007/978-3-319-42634-1_15CrossRefzbMATHGoogle Scholar
  7. 7.
    Blin, L., Fraigniaud, P., Patt-Shamir, B.: On proof-labeling schemes versus silent self-stabilizing algorithms. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 18–32. Springer, Cham (2014). doi: 10.1007/978-3-319-11764-5_2CrossRefGoogle Scholar
  8. 8.
    Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model. In: Proceedings of 2014 ACM Symposium on Principles of Distributed Computing, PODC 2014, pp. 367–376. ACM, New York (2014)Google Scholar
  10. 10.
    Feuilloley, L., Fraigniaud, P., Hirvonen, J.: A hierarchy of local decision. In: 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), pp. 118:1–118:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  11. 11.
    Foerster, K.-T., Luedi, T., Seidel, J., Wattenhofer, R.: Local checkability, no strings attached. In: Proceedings of 17th International Conference on Distributed Computing and Networking, ICDCN 2016, pp. 21:1–21:10. ACM, New York (2016)Google Scholar
  12. 12.
    Foerster, K.-T., Richter, O., Seidel, J., Wattenhofer, R.: Local checkability in dynamic networks. In: Proceedings of 18th International Conference on Distributed Computing and Networking, ICDCN 2017, pp. 4:1–4:10. ACM, New York (2017)Google Scholar
  13. 13.
    Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What can be decided locally without identifiers? In: Proceedings of 2013 ACM Symposium on Principles of Distributed Computing, PODC 2013, pp. 157–165. ACM, New York (2013)Google Scholar
  14. 14.
    Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impact of identifiers on local decision. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 224–238. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-35476-2_16CrossRefzbMATHGoogle Scholar
  15. 15.
    Fraigniaud, P., Hirvonen, J., Suomela, J.: Node labels in local decision. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 31–45. Springer, Cham (2015). doi: 10.1007/978-3-319-25258-2_3CrossRefGoogle Scholar
  16. 16.
    Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local distributed computing. J. ACM 60(5), 35 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and checkability in wait-free computing. Distrib. Comput. 26(4), 223–242 (2013)CrossRefGoogle Scholar
  18. 18.
    Fraigniaud, P., Rajsbaum, S., Travers, C.: On the number of opinions needed for fault-tolerant run-time monitoring in distributed systems. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 92–107. Springer, Cham (2014). doi: 10.1007/978-3-319-11164-3_9CrossRefGoogle Scholar
  19. 19.
    Göös, M., Suomela, J.: Locally checkable proofs. In: 30th ACM Symposium on Principles of Distributed Computing (PODC), pp. 159–168 (2011)Google Scholar
  20. 20.
    Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Distrib. Comput. 20, 253–266 (2007)CrossRefGoogle Scholar
  21. 21.
    Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verification, computation, and fault detection of an MST. In: 30th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 311–320 (2011)Google Scholar
  22. 22.
    Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4), 215–233 (2010)CrossRefGoogle Scholar
  23. 23.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  24. 24.
    Nash-Williams, C.S.A.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. s1–36(1), 445–450 (1961)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nash-Williams, C.S.A.: Decomposition of finite graphs into forests. J. Lond. Math. Soc. s1–39(1), 12 (1964)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Patt-Shamir, B., Perry, M.: Proof-labeling schemes: broadcast, unicast and in between. CoRR, abs/1708.06947 (2017)Google Scholar
  27. 27.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathematics, Philadelphia (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electrical EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations