Integrons as Adaptive Devices

  • José Antonio Escudero
  • Céline Loot
  • Didier MazelEmail author
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB)


Integrons are genetic recombination platforms that enhance bacterial evolvability by enabling the acquisition and differential expression of new genes. These genes are embedded in mobile elements, named cassettes, which can be stockpiled to form a long array of adaptive functions whose expression is driven by the Pc promoter within the integron platform. Integron recombination is governed by the integrase, a distinct type of tyrosine recombinase. This protein can integrate, excise, and reshuffle integron cassettes through different reactions between the attachment sites in the integron platform (attI) and those in cassettes (attC). These rearrangements can modulate the expression of genes by modifying their distance to the Pc promoter. Integrons are ancient structures found in the chromosomes of many bacterial species. Their activity is exquisitely intertwined with bacterial physiology through the coupling to the SOS response. These sedentary chromosomal integrons (SCIs) carry cassette arrays of functions that still nowadays remain broadly cryptic. The intensive use of antibiotics has selected for the transposon-mediated mobilization of integrons harboring antibiotic resistance genes onto conjugative elements. These so-called mobile integrons (MIs) have disseminated to many environmental niches and are currently prevalent in hospitals worldwide. MIs meant the arrival of bacterial multiresistance more than 50 years ago. Today, they represent a major threat to antibiotic chemotherapy and, consequently, to modern medicine. Recombination in integrons is unique. This is the consequence of the single-stranded nature of attC sites and the constraints that such substrates impose on the recombination process. Understanding these recombination reactions tells the evolutionary story of integrons, a tale of innovation that we are only starting to unveil.



This work was supported by the Institut Pasteur, the Centre National de la Recherche Scientifique (CNRS-UMR3525), the European Union Seventh Framework Program (FP7-HEALTH- 2011-single-stage), the “Evolution and Transfer of Antibiotic Resistance” (EvoTAR) project, the Fondation pour la Recherche Medicale (FRM) project DBF20160635736 and the French Government’s Investissement d’Avenir program Laboratoire d’Excellence “Integrative Biology of Emerging Infectious Diseases” (ANR-10-LABX-62-IBEID), and the French National Research Agency (ANR-12-BLAN-DynamINT). JAE is supported by the Marie Curie Intra-European Fellowship for Career Development (FP-7-PEOPLE-2011-IEF, ICADIGE) and by the 2016-T1/BIO-1105 project of the Atracción de Talento Program of the Comunidad de Madrid.


  1. Arakawa Y et al (1995) A novel integron-like element carrying the metallo-beta-lactamase gene blaIMP. Antimicrob Agents Chemother 39:1612–1615CrossRefGoogle Scholar
  2. Baharoglu Z, Mazel D (2011) Vibrio cholerae triggers SOS and mutagenesis in response to a wide range of antibiotics: a route towards multiresistance. Antimicrob Agents Chemother 55:2438–2441. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baharoglu Z, Bikard D, Mazel D (2010) Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation. PLoS Genet 6:e1001165. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baharoglu Z, Krin E, Mazel D (2012) Connecting environment and genome plasticity in the characterization of transformation-induced SOS regulation and carbon catabolite control of the Vibrio cholerae integron integrase. J Bacteriol 194:1659–1667. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baharoglu Z, Krin E, Mazel D (2013) RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae. PLoS Genet 9:e1003421. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Balke VL, Gralla JD (1987) Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli. J Bacteriol 169:4499–4506CrossRefGoogle Scholar
  7. Baquero F, Coque TM, de la Cruz F (2011) Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob Agents Chemother 55:3649–3660. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barker A, Clark CA, Manning PA (1994) Identification of VCR, a repeated sequence associated with a locus encoding a hemagglutinin in Vibrio cholerae O1. J Bacteriol 176:5450–5458CrossRefGoogle Scholar
  9. Barraud O, Ploy MC (2015) Diversity of Class 1 integron gene cassette rearrangements selected under antibiotic pressure. J Bacteriol 197:2171–2178. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bikard D, Loot C, Baharoglu Z, Mazel D (2010a) Folded DNA in action: hairpin formation and biological functions in prokaryotes. Microbiol Mol Biol Rev 74:570–588. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bikard D, Julie-Galau S, Cambray G, Mazel D (2010b) The synthetic integron: an in vivo genetic shuffling device. Nucleic Acids Res 38:e153. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Biskri L, Mazel D (2003) Erythromycin esterase gene ere(A) is located in a functional gene cassette in an unusual class 2 integron. Antimicrob Agents Chemother 47:3326–3331CrossRefGoogle Scholar
  13. Biskri L, Bouvier M, Guerout AM, Boisnard S, Mazel D (2005) Comparative study of class 1 integron and Vibrio cholerae superintegron integrase activities. J Bacteriol 187:1740–1750CrossRefGoogle Scholar
  14. Bissonnette L, Champetier S, Buisson JP, Roy PH (1991) Characterization of the nonenzymatic chloramphenicol resistance (cmlA) gene of the In4 integron of Tn1696: similarity of the product to transmembrane transport proteins. J Bacteriol 173:4493–4502CrossRefGoogle Scholar
  15. Boucher Y, Labbate M, Koenig JE, Stokes HW (2007) Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol 15:301–309CrossRefGoogle Scholar
  16. Bouvier M, Demarre G, Mazel D (2005) Integron cassette insertion: a recombination process involving a folded single strand substrate. EMBO J 24:4356–4367. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bouvier M, Ducos-Galand M, Loot C, Bikard D, Mazel D (2009) Structural features of single-stranded integron cassette attC sites and their role in strand selection. PLoS Genet 5:e1000632. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Boyd EF, Almagro-Moreno S, Parent MA (2009) Genomic islands are dynamic, ancient integrative elements in bacterial evolution. Trends Microbiol 17:47–53. CrossRefPubMedGoogle Scholar
  19. Cambray G, Mazel D (2008) Synonymous genes explore different evolutionary landscapes. PLoS Genet 4:e1000256. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cambray G, Guerout AM, Mazel D (2010) Integrons. Annu Rev Genet 44:141–166. CrossRefPubMedGoogle Scholar
  21. Cambray G et al (2011) Prevalence of SOS-mediated control of integron integrase expression as an adaptive trait of chromosomal and mobile integrons. Mob DNA 2:6. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chamosa LS et al (2017) Lateral antimicrobial resistance genetic transfer is active in the open environment. Sci Rep 7:513. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Champion K, Higgins NP (2007) Growth rate toxicity phenotypes and homeostatic supercoil control differentiate Escherichia coli from Salmonella enterica serovar Typhimurium. J Bacteriol 189:5839–5849. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chandler M et al (2013) Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat Rev Microbiol 11:525–538. CrossRefPubMedGoogle Scholar
  25. Chowdhury N et al (2010) Development of simple and rapid PCR-fingerprinting methods for Vibrio cholerae on the basis of genetic diversity of the superintegron. J Appl Microbiol 109(1):304–312. CrossRefPubMedGoogle Scholar
  26. Collins J, Volckaert G, Nevers P (1982) Precise and nearly-precise excision of the symmetrical inverted repeats of Tn5; common features of recA-independent deletion events in Escherichia coli. Gene 19:139–146. CrossRefPubMedGoogle Scholar
  27. Collis CM, Hall RM (1992a) Gene cassettes from the insert region of integrons are excised as covalently closed circles. Mol Microbiol 6:2875–2885CrossRefGoogle Scholar
  28. Collis CM, Hall RM (1992b) Site-specific deletion and rearrangement of integron insert genes catalyzed by the integron DNA integrase. J Bacteriol 174:1574–1585CrossRefGoogle Scholar
  29. Collis CM, Hall RM (1995) Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob Agents Chemother 39:155–162CrossRefGoogle Scholar
  30. Collis CM, Grammaticopoulos G, Briton J, Stokes HW, Hall RM (1993) Site-specific insertion of gene cassettes into integrons. Mol Microbiol 9:41–52CrossRefGoogle Scholar
  31. Collis CM, Recchia GD, Kim MJ, Stokes HW, Hall RM (2001) Efficiency of recombination reactions catalyzed by class 1 integron integrase IntI1. J Bacteriol 183:2535–2542CrossRefGoogle Scholar
  32. Collis CM, Kim MJ, Partridge SR, Stokes HW, Hall RM (2002) Characterization of the class 3 integron and the site-specific recombination system it determines. J Bacteriol 184:3017–3026CrossRefGoogle Scholar
  33. Cury J, Jove T, Touchon M, Neron B, Rocha EP (2016) Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res 44:4539–4550. CrossRefPubMedPubMedCentralGoogle Scholar
  34. da Fonseca EL, Vicente AC (2012) Functional characterization of a Cassette-specific promoter in the class 1 integron-associated qnrVC1 gene. Antimicrob Agents Chemother 56:3392–3394. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Das B, Martinez E, Midonet C, Barre FX (2013) Integrative mobile elements exploiting Xer recombination. Trends Microbiol 21:23–30. CrossRefPubMedGoogle Scholar
  36. Demarre G, Frumerie C, Gopaul DN, Mazel D (2007) Identification of key structural determinants of the IntI1 integron integrase that influence attC x attI1 recombination efficiency. Nucleic Acids Res 35:6475–6489. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Elsaied H et al (2007) Novel and diverse integron integrase genes and integron-like gene cassettes are prevalent in deep-sea hydrothermal vents. Environ Microbiol 9:2298–2312. CrossRefPubMedGoogle Scholar
  38. Elsaied H et al (2011) Marine integrons containing novel integrase genes, attachment sites, attI, and associated gene cassettes in polluted sediments from Suez and Tokyo Bays. ISME J 5:1162–1177. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Erill I, Campoy S, Barbe J (2007) Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 31:637–656CrossRefGoogle Scholar
  40. Escudero JA, Loot C, Nivina A, Mazel D (2015) The integron: adaptation on demand. Microbiol Spectr 3: MDNA3-0019-2014.
  41. Escudero JA et al (2016) Unmasking the ancestral activity of integron integrases reveals a smooth evolutionary transition during functional innovation. Nat Commun 7:10937. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Feng L et al (2008) A recalibrated molecular clock and independent origins for the cholera pandemic clones. PLoS One 3:e4053. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ferrandiz MJ, Martin-Galiano AJ, Schvartzman JB, de la Campa AG (2010) The genome of Streptococcus pneumoniae is organized in topology-reacting gene clusters. Nucleic Acids Res 38:3570–3581. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Fluit AC, Schmitz FJ (2004) Resistance integrons and super-integrons. Clin Microbiol Infect 10:272–288CrossRefGoogle Scholar
  45. Francia MV, Zabala JC, de la Cruz F, Garcia-Lobo JM (1999) The IntI1 integron integrase preferentially binds single-stranded DNA of the attC site. J Bacteriol 181:6844–6849PubMedPubMedCentralGoogle Scholar
  46. Gerdes K, Christensen SK, Lobner-Olesen A (2005) Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 3:371–382CrossRefGoogle Scholar
  47. Gestal AM, Stokes HW, Partridge SR, Hall RM (2005) Recombination between the dfrA12-orfF-aadA2 cassette array and an aadA1 gene cassette creates a hybrid cassette, aadA8b. Antimicrob Agents Chemother 49:4771–4774. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gestal AM, Liew EF, Coleman NV (2011) Natural transformation with synthetic gene cassettes: new tools for integron research and biotechnology. Microbiology 157:3349–3360. CrossRefPubMedGoogle Scholar
  49. Gillings MR (2014) Integrons: past, present, and future. Microbiol Mol Biol Rev 78:257–277. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Gillings MR, Holley MP, Stokes HW, Holmes AJ (2005) Integrons in Xanthomonas: a source of species genome diversity. Proc Natl Acad Sci USA 102:4419–4424CrossRefGoogle Scholar
  51. Gillings M et al (2008) The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol 190:5095–5100. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gillings MR, Holley MP, Stokes HW (2009) Evidence for dynamic exchange of qac gene cassettes between class 1 integrons and other integrons in freshwater biofilms. FEMS Microbiol Lett 296:282–288. CrossRefPubMedGoogle Scholar
  53. Gillings MR et al (2015) Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J 9:1269–1279. CrossRefPubMedGoogle Scholar
  54. Gonzalez-Zorn B, Escudero JA (2012) Ecology of antimicrobial resistance: humans, animals, food and environment. Int Microbiol 15:101–109. CrossRefPubMedGoogle Scholar
  55. Gonzalez-Zorn B et al (2005) Genetic basis for dissemination of armA. J Antimicrob Chemother 56:583–585. CrossRefPubMedGoogle Scholar
  56. Gravel A, Messier N, Roy PH (1998a) Point mutations in the integron integrase IntI1 that affect recombination and/or substrate recognition. J Bacteriol 180:5437–5442PubMedPubMedCentralGoogle Scholar
  57. Gravel A, Fournier B, Roy PH (1998b) DNA complexes obtained with the integron integrase IntI1 at the attI1 site. Nucleic Acids Res 26:4347–4355. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Grieb MS et al (2017) Dynamic stepwise opening of integron attC DNA hairpins by SSB prevents toxicity and ensures functionality. Nucleic Acids Res 45(18):10555–10563. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605. CrossRefPubMedGoogle Scholar
  60. Guerin E et al (2009) The SOS response controls integron recombination. Science 324:1034. CrossRefPubMedGoogle Scholar
  61. Guerin E, Jove T, Tabesse A, Mazel D, Ploy MC (2011) High-level gene cassette transcription prevents integrase expression in class 1 integrons. J Bacteriol 193:5675–5682. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Guerout AM et al (2013) Characterization of the phd-doc and ccd toxin-antitoxin cassettes from Vibrio superintegrons. J Bacteriol 195:2270–2283. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Gutierrez A et al (2013) beta-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Commun 4:1610. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Hall RM, Brookes DE, Stokes HW (1991) Site-specific insertion of genes into integrons – role of the 59-base element and determination of the recombination cross-over point. Mol Microbiol 5:1941–1959. CrossRefPubMedGoogle Scholar
  65. Hanau-Bercot B, Podglajen I, Casin I, Collatz E (2002) An intrinsic control element for translational initiation in class 1 integrons. Mol Microbiol 44:119–130CrossRefGoogle Scholar
  66. Hansson K, Skold O, Sundstrom L (1997) Non-palindromic attl sites of integrons are capable of site-specific recombination with one another and with secondary targets. Mol Microbiol 26:441–453CrossRefGoogle Scholar
  67. Harms K, Starikova I, Johnsen PJ (2013) Costly Class-1 integrons and the domestication of the the functional integrase. Mob Genet Elements 3:e24774. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Hochhut B et al (2001) Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother 45:2991–3000CrossRefGoogle Scholar
  69. Hocquet D et al (2012) Evidence for induction of integron-based antibiotic resistance by the SOS response in a clinical setting. PLoS Pathog 8:e1002778. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Holmes AJ et al (2003a) Recombination activity of a distinctive integron-gene cassette system associated with Pseudomonas stutzeri populations in soil. J Bacteriol 185:918–928CrossRefGoogle Scholar
  71. Holmes AJ et al (2003b) The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ Microbiol 5:383–394CrossRefGoogle Scholar
  72. Iqbal N, Guerout AM, Krin E, Le Roux F, Mazel D (2015) Comprehensive functional analysis of the 18 Vibrio cholerae N16961 toxin-antitoxin systems substantiates their role in stabilizing the superintegron. J Bacteriol 197:2150–2159. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Jacquier H, Zaoui C, Sanson-le Pors MJ, Mazel D, Bercot B (2009) Translation regulation of integrons gene cassette expression by the attC sites. Mol Microbiol 72:1475–1486. CrossRefPubMedGoogle Scholar
  74. Jaworski A, Higgins NP, Wells RD, Zacharias W (1991) Topoisomerase mutants and physiological conditions control supercoiling and Z-DNA formation in vivo. J Biol Chem 266:2576–2581PubMedGoogle Scholar
  75. Johansson C, Kamali-Moghaddam M, Sundstrom L (2004) Integron integrase binds to bulged hairpin DNA. Nucleic Acids Res 32:4033–4043CrossRefGoogle Scholar
  76. Johansson C, Boukharta L, Eriksson J, Aqvist J, Sundstrom L (2009) Mutagenesis and homology modeling of the Tn21 integron integrase IntI1. Biochemistry 48:1743–1753. CrossRefPubMedGoogle Scholar
  77. Joss MJ et al (2009) ACID: annotation of cassette and integron data. BMC Bioinformatics 10:118. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Jove T, Da Re S, Denis F, Mazel D, Ploy MC (2010) Inverse correlation between promoter strength and excision activity in class 1 integrons. PLoS Genet 6:e1000793. CrossRefPubMedPubMedCentralGoogle Scholar
  79. Jové T, Da Re S, Tabesse A, Gassama-Sow A, Ploy MC (2017) Gene expression in class 2 integrons is SOS-independent and involves two Pc promoters. Front Microbiol 8:1499. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Koenig JE et al (2008) Integron-associated gene cassettes in Halifax Harbour: assessment of a mobile gene pool in marine sediments. Environ Microbiol 10:1024–1038. CrossRefPubMedGoogle Scholar
  81. Koenig JE et al (2009) Integron gene cassettes and degradation of compounds associated with industrial waste: the case of the Sydney tar ponds. PLoS One 4:e5276. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Krin E, Cambray G, Mazel D (2014) The superintegron integrase and the cassette promoters are co-regulated in Vibrio cholerae. PLoS One 9:e91194. CrossRefPubMedPubMedCentralGoogle Scholar
  83. Labbate M et al (2007) Use of chromosomal integron arrays as a phylogenetic typing system for Vibrio cholerae pandemic strains. Microbiology 153:1488–1498CrossRefGoogle Scholar
  84. Labbate M, Case RJ, Stokes HW (2009) The integron/gene cassette system: an active player in bacterial adaptation. Methods Mol Biol 532:103–125. CrossRefPubMedGoogle Scholar
  85. Lacotte Y, Ploy MC, Raherison S (2017) Class 1 integrons are low-cost structures in Escherichia coli. ISME J 11:1535–1544. CrossRefPubMedPubMedCentralGoogle Scholar
  86. Leon G, Roy PH (2009) Potential role of group IIC-attC introns in integron cassette formation. J Bacteriol 191:6040–6051. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Levesque C, Brassard S, Lapointe J, Roy PH (1994) Diversity and relative strength of tandem promoters for the antibiotic-resistance genes of several integrons. Gene 142:49–54CrossRefGoogle Scholar
  88. Liebert CA, Hall RM, Summers AO (1999) Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 63:507–522PubMedPubMedCentralGoogle Scholar
  89. Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84:7024–7027CrossRefGoogle Scholar
  90. Loot C, Bikard D, Rachlin A, Mazel D (2010) Cellular pathways controlling integron cassette site folding. EMBO J 29:2623–2634. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Loot C, Ducos-Galand M, Escudero JA, Bouvier M, Mazel D (2012) Replicative resolution of integron cassette insertion. Nucleic Acids Res 40:8361–8370. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Loot C et al (2014) The integron integrase efficiently prevents the melting effect of Escherichia coli single-stranded DNA-binding protein on folded attC sites. J Bacteriol 196:762–771. CrossRefPubMedPubMedCentralGoogle Scholar
  93. Loot C et al (2017) Differences in integron cassette excision dynamics shape a trade-off between evolvability and genetic capacitance. MBio 8:e02296-16. CrossRefPubMedPubMedCentralGoogle Scholar
  94. MacDonald D, Demarre G, Bouvier M, Mazel D, Gopaul DN (2006) Structural basis for broad DNA-specificity in integron recombination. Nature 440:1157–1162. CrossRefPubMedGoogle Scholar
  95. Majchrzak M, Bowater RP, Staczek P, Parniewski P (2006) SOS repair and DNA supercoiling influence the genetic stability of DNA triplet repeats in Escherichia coli. J Mol Biol 364:612–624. CrossRefPubMedGoogle Scholar
  96. Martin C et al (1990) Transposition of an antibiotic resistance element in mycobacteria. Nature 345:739–743CrossRefGoogle Scholar
  97. Martinez E, de la Cruz F (1988) Transposon Tn21 encodes a RecA-independant site-specific integration system. Mol Gen Genet 211:320–325CrossRefGoogle Scholar
  98. Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4:608–620. CrossRefPubMedGoogle Scholar
  99. Mazel D, Dychinco B, Webb VA, Davies J (1998) A distinctive class of integron in the Vibrio cholerae genome. Science 280:605–608CrossRefGoogle Scholar
  100. Messier N, Roy PH (2001) Integron integrases possess a unique additional domain necessary for activity. J Bacteriol 183:6699–6706CrossRefGoogle Scholar
  101. Meyer RR, Laine PS (1990) The single-stranded DNA-binding protein of Escherichia coli. Microbiol Rev 54:342–380PubMedPubMedCentralGoogle Scholar
  102. Midonet C, Barre FX (2014) Xer site-specific recombination: promoting vertical and horizontal transmission of genetic information. Microbiol Spectr 2.
  103. Mitsuhashi S, Harada K, Hashimoto H, Egawa R (1961) On the drug-resistance of enteric bacteria. Jpn J Exp Med 31:47–52PubMedGoogle Scholar
  104. Moura A et al (2009) INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics 25:1096–1098. CrossRefPubMedGoogle Scholar
  105. Moura A, Jove T, Ploy MC, Henriques I, Correia A (2012) Diversity of gene cassette promoters in class 1 integrons from wastewater environments. Appl Environ Microbiol 78:5413–5416. CrossRefPubMedPubMedCentralGoogle Scholar
  106. Naas T, Mikami Y, Imai T, Poirel L, Nordmann P (2001) Characterization of In53, a class 1 plasmid- and composite transposon-located integron of Escherichia coli which carries an unusual array of gene cassettes. J Bacteriol 183:235–249CrossRefGoogle Scholar
  107. Nakaya R, Nakamura A, Murata Y (1960) Resistance transfer agents in Shigella. Biochem Biophys Res Commun 3:654–659CrossRefGoogle Scholar
  108. Nandi S, Maurer JJ, Hofacre C, Summers AO (2004) Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc Natl Acad Sci USA 101:7118–7122CrossRefGoogle Scholar
  109. Nemergut DR et al (2008) Insights and inferences about integron evolution from genomic data. BMC Genomics 9:261CrossRefGoogle Scholar
  110. Nesvera J, Hochmannova J, Patek M (1998) An integron of class 1 is present on the plasmid pCG4 from gram-positive bacterium Corynebacterium glutamicum. FEMS Microbiol Lett 169:391–395CrossRefGoogle Scholar
  111. Nield BS et al (2001) Recovery of new integron classes from environmental DNA. FEMS Microbiol Lett 195:59–65CrossRefGoogle Scholar
  112. Nivina A, Escudero JA, Vit C, Mazel D, Loot C (2016) Efficiency of integron cassette insertion in correct orientation is ensured by the interplay of the three unpaired features of attC recombination sites. Nucleic Acids Res 44:7792–7803. CrossRefPubMedPubMedCentralGoogle Scholar
  113. Nunes-Duby SE, Kwon HJ, Tirumalai RS, Ellenberger T, Landy A (1998) Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 26:391–406. CrossRefPubMedPubMedCentralGoogle Scholar
  114. Ogawa A, Takeda T (1993) The gene encoding the heat-stable enterotoxin of Vibrio cholerae is flanked by 123-base pair direct repeats. Microbiol Immunol 37:607–616CrossRefGoogle Scholar
  115. Partridge SR et al (2000) Definition of the attI1 site of class 1 integrons. Microbiology 146(Pt 11):2855–2864CrossRefGoogle Scholar
  116. Partridge SR, Tsafnat G, Coiera E, Iredell JR (2009) Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 33:757–784. CrossRefPubMedGoogle Scholar
  117. Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M (1996) Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem 63:1–22CrossRefGoogle Scholar
  118. Quinones M, Kimsey HH, Waldor MK (2005) LexA cleavage is required for CTX prophage induction. Mol Cell 17:291–300. CrossRefPubMedGoogle Scholar
  119. Quiroga C, Centron D (2009) Using genomic data to determine the diversity and distribution of target site motifs recognized by class C-attC group II introns. J Mol Evol 68:539–549. CrossRefPubMedGoogle Scholar
  120. Ramirez MS, Bello H, Gonzalez Rocha G, Marquez C, Centron D (2010) Tn7::In2-8 dispersion in multidrug resistant isolates of Acinetobacter baumannii from Chile. Rev Argent Microbiol 42:138–140. CrossRefPubMedGoogle Scholar
  121. Rapa RA, Labbate M (2013) The function of integron-associated gene cassettes in Vibrio species: the tip of the iceberg. Front Microbiol 4:385. CrossRefPubMedPubMedCentralGoogle Scholar
  122. Rowe-Magnus DA (2009) Integrase-directed recovery of functional genes from genomic libraries. Nucleic Acids Res 37:e118. CrossRefPubMedPubMedCentralGoogle Scholar
  123. Rowe-Magnus DA, Guerout A-M, Mazel D (1999) Super-integrons. Res Microbiol 150:641–651CrossRefGoogle Scholar
  124. Rowe-Magnus DA et al (2001) The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc Natl Acad Sci USA 98:652–657CrossRefGoogle Scholar
  125. Rowe-Magnus DA, Guerout AM, Biskri L, Bouige P, Mazel D (2003) Comparative analysis of superintegrons: engineering extensive genetic diversity in the vibrionaceae. Genome Res 13:428–442CrossRefGoogle Scholar
  126. Roy Chowdhury P et al (2009) Tn6060, a transposon from a genomic island in a Pseudomonas aeruginosa clinical isolate that includes two class 1 integrons. Antimicrob Agents Chemother 53:5294–5296. CrossRefPubMedGoogle Scholar
  127. Roy R, Kozlov AG, Lohman TM, Ha T (2009) SSB protein diffusion on single-stranded DNA stimulates RecA filament formation. Nature 461:1092–1097. CrossRefPubMedPubMedCentralGoogle Scholar
  128. San Millan A et al (2015) Sequencing of plasmids pAMBL1 and pAMBL2 from Pseudomonas aeruginosa reveals a blaVIM-1 amplification causing high-level carbapenem resistance. J Antimicrob Chemother 70(11):3000–3003. CrossRefPubMedGoogle Scholar
  129. Sberro H et al (2013) Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol Cell 50:136–148. CrossRefPubMedPubMedCentralGoogle Scholar
  130. Shi L et al (2006) Unnoticed spread of class 1 integrons in gram-positive clinical strains isolated in Guangzhou, China. Microbiol Immunol 50:463–467. CrossRefPubMedGoogle Scholar
  131. Shultzaberger RK, Bucheimer RE, Rudd KE, Schneider TD (2001) Anatomy of Escherichia coli ribosome binding sites. J Mol Biol 313:215–228. CrossRefPubMedGoogle Scholar
  132. Sorum H, Roberts MC, Crosa JH (1992) Identification and cloning of a tetracycline resistance gene from the fish pathogen Vibrio salmonicida. Antimicrob Agents Chemother 36:611–615CrossRefGoogle Scholar
  133. Starikova I et al (2012) A trade-off between the fitness cost of functional integrases and long-term stability of integrons. PLoS Pathog 8:e1003043. CrossRefPubMedPubMedCentralGoogle Scholar
  134. Stokes HW, Hall RM (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol 3:1669–1683CrossRefGoogle Scholar
  135. Stokes HW, Hall RM (1991) Sequence analysis of the inducible chloramphenicol resistance determinant in the Tn1696 integron suggests regulation by translational attenuation. Plasmid 26:10–19CrossRefGoogle Scholar
  136. Stokes HW, O’Gorman DB, Recchia GD, Parsekhian M, Hall RM (1997) Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol Microbiol 26:731–745CrossRefGoogle Scholar
  137. Stokes HW et al (2001) Gene cassette PCR: sequence-independent recovery of entire genes from environmental DNA. Appl Environ Microbiol 67:5240–5246CrossRefGoogle Scholar
  138. Strugeon E, Tilloy V, Ploy MC, Da Re S (2016) The stringent response promotes antibiotic resistance dissemination by regulating integron integrase expression in biofilms. MBio 7:e00868-16. CrossRefPubMedPubMedCentralGoogle Scholar
  139. Sureshan V et al (2013) Integron gene cassettes: a repository of novel protein folds with distinct interaction sites. PLoS One 8:e52934. CrossRefPubMedPubMedCentralGoogle Scholar
  140. Szekeres S, Dauti M, Wilde C, Mazel D, Rowe-Magnus DA (2007) Chromosomal toxin-antitoxin loci can diminish large-scale genome reductions in the absence of selection. Mol Microbiol 63:1588–1605CrossRefGoogle Scholar
  141. Tawfik DS (2014) Accuracy-rate tradeoffs: how do enzymes meet demands of selectivity and catalytic efficiency. Curr Opin Chem Biol 21:73–80. CrossRefPubMedGoogle Scholar
  142. Trinh TQ, Sinden RR (1991) Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Nature 352:544–547CrossRefGoogle Scholar
  143. Tsafnat G, Copty J, Partridge SR (2011) RAC: repository of antibiotic resistance cassettes. Database (Oxford) 2011:bar054. CrossRefGoogle Scholar
  144. Val ME et al (2005) The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol Cell 19:559–566. CrossRefPubMedGoogle Scholar
  145. Van Melderen L, Saavedra De Bast M (2009) Bacterial toxin-antitoxin systems: more than selfish entities? PLoS Genet 5:e1000437. CrossRefPubMedPubMedCentralGoogle Scholar
  146. Vinue L, Jove T, Torres C, Ploy MC (2011) Diversity of class 1 integron gene cassette Pc promoter variants in clinical Escherichia coli strains and description of a new P2 promoter variant. Int J Antimicrob Agents 38:526–529. CrossRefPubMedGoogle Scholar
  147. Wagner A (2011) The molecular origins of evolutionary innovations. Trends Genet 27:397–410. CrossRefPubMedGoogle Scholar
  148. Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914CrossRefGoogle Scholar
  149. Wu YW, Doak TG, Ye Y (2013) The gain and loss of chromosomal integron systems in the Treponema species. BMC Evol Biol 13:16. CrossRefPubMedPubMedCentralGoogle Scholar
  150. Xu H, Davies J, Miao V (2007) Molecular characterization of class 3 integrons from Delftia spp. J Bacteriol 189(17):6276–6283CrossRefGoogle Scholar
  151. Yamaguchi Y, Park JH, Inouye M (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45:61–79. CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • José Antonio Escudero
    • 1
    • 2
    • 3
    • 4
  • Céline Loot
    • 1
    • 2
  • Didier Mazel
    • 1
    • 2
    Email author
  1. 1.Institut Pasteur, Unité de Plasticité du Génome Bactérien, Département Génomes et GénétiqueParisFrance
  2. 2.CNRS, UMR3525ParisFrance
  3. 3.Molecular Basis of Adaptation, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de MadridMadridSpain
  4. 4.Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de MadridMadridSpain

Personalised recommendations