Mayr Versus Woese: Akaryotes and Eukaryotes

  • Charles G. Kurland
  • Ajith HarishEmail author
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB)


In 1998, on the brink of a great public effort that by now has delivered the sequences of thousands of genomes and has annotated these genomes by translating tens of thousands of 3D protein domain structures from their coding sequences, Ernst Mayr and Carl Woese engaged in a debate. At issue were the virtues of phenotypic contra genotypic approaches to phylogeny and taxonomy. Though not conclusive, this confrontation in retrospect illustrates the defects of both their perspectives and simultaneously illuminates the strengths of the approach to phylogenetic systematics that was favored by Willi Hennig. Hennig’s cladism lends itself well to a rigorous exploitation of genome sequence data in which both the genotypic and phenotypic modes replace the technically questionable gene tree approach to deep phylogeny championed by Woese. Diverse phylogenomic data now suggest that though Mayr’s phenetic arguments were incomplete, his division of organisms into two major taxonomic groups, the akaryotes (formerly the prokaryotes) and eukaryotes, is probably correct. Thus, in a phylogeny based on genome repertoires of protein domains, the universal common ancestor of the three superkingdoms descends in two primary lineages, Akaryote and Eukaryote.



We are indebted to Siv Andersson, Otto Berg, Dan Dykhuizen, Måns Ehrenberg, Julian Gough, Diarmaid Hughes, Bruce Levin, Michael Levitt, Mikael Oliveberg, David Penny, Antonis Rokas, Anders Tunlid, Richard Villems, and Irmgard Winkler for essential criticism and help in preparing this paper.


  1. Abby SS, Tannier E, Gouy M, Daubin V (2012) Lateral gene transfer as a support for the tree of life. Proc Natl Acad Sci 109(13):4962–4967PubMedCrossRefGoogle Scholar
  2. Andersson G, Kurland C (1991) An extreme codon preference strategy: codon reassignment. Mol Biol Evol 8(4):530–544PubMedGoogle Scholar
  3. Andersson SG, Kurland CG (1998) Reductive evolution of resident genomes. Trends Microbiol 6(7):263–268PubMedCrossRefGoogle Scholar
  4. Andersson DI, Näsvall J (2013) New genes arise via innovation, amplification, divergence. Microbe 8(4):166–170Google Scholar
  5. Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UCM, Podowski RM, Näslund AK, Eriksson A-S, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396(6707):133–140CrossRefGoogle Scholar
  6. Attardi G (1985) Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol 93:93–145PubMedCrossRefGoogle Scholar
  7. Baldauf SL, Palmer JD, Doolittle WF (1996) The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc Natl Acad Sci 93(15):7749–7754PubMedCrossRefGoogle Scholar
  8. Berg OG, Kurland C (1997) Growth rate-optimised tRNA abundance and codon usage. J Mol Biol 270(4):544–550PubMedCrossRefGoogle Scholar
  9. Berg OG, Kurland C (2002) Evolution of microbial genomes: sequence acquisition and loss. Mol Biol Evol 19(12):2265–2276PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bergthorsson U, Andersson DI, Roth JR (2007) Ohno’s dilemma: evolution of new genes under continuous selection. Proc Natl Acad Sci 104(43):17004–17009PubMedCrossRefGoogle Scholar
  11. Brinkmann H, Philippe H (1999) Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol Biol Evol 16(6):817–825PubMedCrossRefGoogle Scholar
  12. Brunet LJ, McMahon JA, McMahon AP, Harland RM (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280(5368):1455–1457PubMedCrossRefGoogle Scholar
  13. Caetano-Anollés G (2002) Evolved RNA secondary structure and the rooting of the universal tree of life. J Mol Evol 54(3):333–345PubMedCrossRefGoogle Scholar
  14. Castoe TA, de Koning AP, Pollock DD (2010) Adaptive molecular convergence: molecular evolution versus molecular phylogenetics. Commun Integr Biol 3(1):67–69PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chatton ÉPL (1938) Titres et travaux scientifiques (1906–1937) de Edouard Chatton. Impr. E. Sottano, SèteGoogle Scholar
  16. Chothia C, Gough J (2009) Genomic and structural aspects of protein evolution. Biochem J 419:15–28PubMedCrossRefGoogle Scholar
  17. Copley SD (2003) Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr Opin Chem Biol 7(2):265–272PubMedCrossRefPubMedCentralGoogle Scholar
  18. Crick F (1981) Life itself: its origin and nature. Simon and Schuster, New York, NY. 192 pGoogle Scholar
  19. Danielsson J, Awad W, Saraboji K, Kurnik M, Lang L, Leinartaitė L, Marklund SL, Logan DT, Oliveberg M (2013) Global structural motions from the strain of a single hydrogen bond. Proc Natl Acad Sci 110(10):3829–3834PubMedCrossRefPubMedCentralGoogle Scholar
  20. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Murray, LondonCrossRefGoogle Scholar
  21. Degnan JH, Rosenberg NA (2006) Discordance of species trees with their most likely gene trees. PLoS Genet 2(5):e68PubMedPubMedCentralCrossRefGoogle Scholar
  22. Deng C, Cheng C-HC, Ye H, He X, Chen L (2010) Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proc Natl Acad Sci 107(50):21593–21598PubMedCrossRefGoogle Scholar
  23. Doolittle RF (1995) The multiplicity of domains in proteins. Annu Rev Biochem 64(1):287–314PubMedCrossRefGoogle Scholar
  24. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284(5423):2124–2128CrossRefGoogle Scholar
  25. Doolittle RF (2005) Evolutionary aspects of whole-genome biology. Curr Opin Struct Biol 15(3):248–253PubMedCrossRefGoogle Scholar
  26. Doolittle WF (2012) Population genomics: how bacterial species form and why they don’t exist. Curr Biol 22(11):R451–R453PubMedCrossRefGoogle Scholar
  27. Doolittle WF, Brown JR (1994) Tempo, mode, the progenote, and the universal root. Proc Natl Acad Sci 91(15):6721–6728PubMedCrossRefGoogle Scholar
  28. Doolittle WF, Zhaxybayeva O (2013) What is a prokaryote? In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic biology and symbiotic associations. Springer, BerlinCrossRefGoogle Scholar
  29. Dujon B (2010) Yeast evolutionary genomics. Nat Rev Genet 11(7):512–524PubMedCrossRefGoogle Scholar
  30. Ehrenberg M, Kurland CG (1984) Costs of accuracy determined by a maximal growth rate constraint. Q Rev Biophys 17(1):45–82PubMedCrossRefGoogle Scholar
  31. Fontana W, Schuster P (1998) Continuity in evolution: on the nature of transitions. Science 280(5368):1451–1455PubMedCrossRefGoogle Scholar
  32. Forterre P (1992) Neutral terms [14]. Nature 355(6358):305CrossRefGoogle Scholar
  33. Forterre P, Philippe H (1999) Where is the root of the universal tree of life? Bioessays 21(10):871–879PubMedCrossRefGoogle Scholar
  34. Forterre P, Benachenhou-Lahfa N, Confalonieri F, Duguet M, Elie C, Labedan B (1992) The nature of the last universal ancestor and the root of the tree of life, still open questions. Biosystems 28(1):15–32PubMedCrossRefGoogle Scholar
  35. Gibbon STF, House CH (1999) Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res 27(21):4218–4222CrossRefGoogle Scholar
  36. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309(5738):1242–1245PubMedCrossRefGoogle Scholar
  37. Gough J (2005) Convergent evolution of domain architectures (is rare). Bioinformatics 21(8):1464–1471PubMedCrossRefGoogle Scholar
  38. Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313(4):903–919PubMedCrossRefGoogle Scholar
  39. Gouy R, Baurain D, Philippe H (2015) Rooting the tree of life: the phylogenetic jury is still out. Philos Trans R Soc B 370(1678):20140329CrossRefGoogle Scholar
  40. Gray MW (2017) Lynn Margulis and the endosymbiont hypothesis: 50 years later. Mol Biol Cell 28(10):1285–1287PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46(1):1PubMedPubMedCentralGoogle Scholar
  42. Grishin NV (2001) Fold change in evolution of protein structures. J Struct Biol 134(2):167–185PubMedCrossRefGoogle Scholar
  43. Haglund E, Lindberg MO, Oliveberg M (2008) Changes of protein folding pathways by circular permutation overlapping nuclei promote global cooperativity. J Biol Chem 283(41):27904–27915PubMedCrossRefGoogle Scholar
  44. Harish A, Kurland CG (2017a) Akaryotes and eukaryotes are independent descendants of a universal common ancestor. Biochimie 138:168–183PubMedCrossRefGoogle Scholar
  45. Harish A, Kurland CG (2017b) Empirical genome evolution models root the tree of life. Biochimie 138:137–155PubMedCrossRefGoogle Scholar
  46. Harish A, Kurland CG (2017c) Mitochondria are not captive bacteria. J Theor Biol 434:88–98PubMedCrossRefGoogle Scholar
  47. Harish A, Tunlid A, Kurland CG (2013) Rooted phylogeny of the three superkingdoms. Biochimie 95(8):1593–1604PubMedCrossRefGoogle Scholar
  48. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K (2016) A new view of the tree of life. Nat Microbiol 1:16048PubMedCrossRefPubMedCentralGoogle Scholar
  49. Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, Tanaka M, Satoh N, Bachtrog D, Wilson AC (2013) Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153(7):1567–1578PubMedCrossRefGoogle Scholar
  50. Illergård K, Ardell DH, Elofsson A (2009) Structure is three to ten times more conserved than sequence—a study of structural response in protein cores. Proteins 77(3):499–508PubMedCrossRefPubMedCentralGoogle Scholar
  51. Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci 86(23):9355–9359PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kimura M (1984) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  53. Koskiniemi S, Sun S, Berg OG, Andersson DI (2012) Selection-driven gene loss in bacteria. PLoS Genet 8(6):e1002787PubMedPubMedCentralCrossRefGoogle Scholar
  54. Korbel JO et al (2002) SHOT: a web server for the construction of genome phylogenies. Trends Genet 18(3):158–162PubMedCrossRefGoogle Scholar
  55. Kuo C-H, Ochman H (2009) Deletional bias across the three domains of life. Genome Biol Evol 1:145PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kurland C (1992) Translational accuracy and the fitness of bacteria. Annu Rev Genet 26(1):29–50PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kurland CG (2000) Something for everyone: horizontal gene transfer in evolution. EMBO Rep 1(2):92PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kurland CG (2010) The RNA dreamtime. Bioessays 32(10):866–871PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kurland CG, Berg OG (2010) A hitchhikers guide to evolving networks. In: Caetano-Anollés G (ed) Evolutionary genomics and systems biology. Wiley, Hoboken, NJGoogle Scholar
  60. Kurland C, Collins L, Penny D (2006) Genomics and the irreducible nature of eukaryote cells. Science 312(5776):1011–1014PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kurland CG, Canbäck B, Berg OG (2007) The origins of modern proteomes. Biochimie 89(12):1454–1463PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lind PA, Berg OG, Andersson DI (2010a) Mutational robustness of ribosomal protein genes. Science 330(6005):825–827PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lind PA, Tobin C, Berg OG, Kurland CG, Andersson DI (2010b) Compensatory gene amplification restores fitness after inter-species gene replacements. Mol Microbiol 75(5):1078–1089PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lynch M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci 104(Suppl 1):8597–8604PubMedCrossRefPubMedCentralGoogle Scholar
  65. Maeso I, Roy SW, Irimia M (2012) Widespread recurrent evolution of genomic features. Genome Biol Evol 4(4):486–500PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mayr E (1982) The growth of biological thought: diversity, evolution and inheritance. Harvard University Press, Cambridge, MAGoogle Scholar
  67. Mayr E (1998) Two empires or three? Proc Natl Acad Sci U S A 95(17):9720–9723PubMedPubMedCentralCrossRefGoogle Scholar
  68. Moran NA (2003) Tracing the evolution of gene loss in obligate bacterial symbionts. Curr Opin Microbiol 6(5):512–518PubMedCrossRefPubMedCentralGoogle Scholar
  69. Morris JJ, Lenski RE, Zinser ER (2012) The Black Queen hypothesis: evolution of dependencies through adaptive gene loss. MBio 3(2):e00036-12PubMedPubMedCentralCrossRefGoogle Scholar
  70. Morrison DA (2006) Phylogenetic analyses of parasites in the new millennium. Adv Parasitol 63:1–124PubMedCrossRefPubMedCentralGoogle Scholar
  71. Morrison DA (2009) Why would phylogeneticists ignore computerized sequence alignment? Syst Biol 58(1):150–158PubMedCrossRefGoogle Scholar
  72. Mossel E, Steel M (2004) A phase transition for a random cluster model on phylogenetic trees. Math Biosci 187(2):189–203PubMedCrossRefGoogle Scholar
  73. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540PubMedGoogle Scholar
  74. Nasir A, Kim KM, Caetano-Anollés G (2015) Lokiarchaeota: eukaryote-like missing links from microbial dark matter? Trends Microbiol 23(8):448–450PubMedCrossRefPubMedCentralGoogle Scholar
  75. Näsvall J, Sun L, Roth JR, Andersson DI (2012) Real-time evolution of new genes by innovation, amplification, and divergence. Science 338(6105):384–387PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, OxfordGoogle Scholar
  77. Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztányi Z, Uversky VN, Obradovic Z, Kurgan L, Dunker AK, Gough J (2013) D2P2: Database of disordered protein predictions. Nucleic Acids Res 41(D1):D508–D516PubMedCrossRefPubMedCentralGoogle Scholar
  78. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304CrossRefGoogle Scholar
  79. Ohno S (1970) Evolution by gene duplication. George Alien & Unwin/Springer, London/BerlinCrossRefGoogle Scholar
  80. Oliveberg M, Wolynes PG (2005) The experimental survey of protein-folding energy landscapes. Q Rev Biophys 38(03):245–288PubMedCrossRefPubMedCentralGoogle Scholar
  81. Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284(5757):604–607CrossRefGoogle Scholar
  82. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276(5313):734–740PubMedCrossRefPubMedCentralGoogle Scholar
  83. Pearson WR (1995) Effective protein sequence comparison. Methods Enzymol 266:227–258CrossRefGoogle Scholar
  84. Penny D (2011) Darwin’s theory of descent with modification, versus the biblical tree of life. PLoS Biol 9(7):e1001096PubMedPubMedCentralCrossRefGoogle Scholar
  85. Penny D, Collins L (2010) Evolutionary genomics leads the way. In: Caetano-Anollés G (ed) Evolutionary genomics and systems biology. Wiley, Hoboken, NJGoogle Scholar
  86. Pethica R, Levitt M, Gough J (2012) Evolutionarily consistent families in SCOP: sequence, structure and function. BMC Struct Biol 12(1):27PubMedPubMedCentralCrossRefGoogle Scholar
  87. Philippe H, Forterre P (1999) The rooting of the universal tree of life is not reliable. J Mol Evol 49(4):509–523PubMedCrossRefPubMedCentralGoogle Scholar
  88. Philippe H, Laurent J (1998) How good are deep phylogenetic trees? Curr Opin Genet Dev 8(6):616–623PubMedCrossRefPubMedCentralGoogle Scholar
  89. Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, Baurain D (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol 9(3):e1000602PubMedPubMedCentralCrossRefGoogle Scholar
  90. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu W-T, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499(7459):431–437PubMedCrossRefPubMedCentralGoogle Scholar
  91. Rokas A, Carroll SB (2006) Bushes in the tree of life. PLoS Biol 4(11):e352PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14(3):225–275CrossRefGoogle Scholar
  93. Salichos L, Rokas A (2013) Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497(7449):327–331PubMedCrossRefGoogle Scholar
  94. Silva FJ, Latorre A, Moya A (2001) Genome size reduction through multiple events of gene disintegration in Buchnera APS. Trends Genet 17(11):615–618PubMedCrossRefGoogle Scholar
  95. Singer GA, Hickey DA (2003) Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content. Gene 317:39–47PubMedCrossRefGoogle Scholar
  96. Smith JM, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23(1):23–35PubMedCrossRefGoogle Scholar
  97. Snel B, Bork P, Huynen MA (1999) Genome phylogeny based on gene content. Nat Genet 21(1):108–110PubMedCrossRefGoogle Scholar
  98. Stanier RY, van Niel C (1962) The concept of a bacterium. Arch Microbiol 42(1):17–35Google Scholar
  99. Tekaia F, Lazcano A, Dujon B (1999) The genomic tree as revealed from whole proteome comparisons. Genome Res 9(6):550–557PubMedPubMedCentralGoogle Scholar
  100. Theobald DL, Wuttke DS (2005) Divergent evolution within protein superfolds inferred from profile-based phylogenetics. J Mol Biol 354(3):722–737PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tourasse NJ, Gouy M (1999) Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Mol Phylogenet Evol 13(1):159–168PubMedCrossRefGoogle Scholar
  102. Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5(4):316–323PubMedCrossRefGoogle Scholar
  103. Viklund J, Ettema TJ, Andersson SG (2012) Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade. Mol Biol Evol 29(2):599–615PubMedCrossRefGoogle Scholar
  104. Wang M, Kurland CG, Caetano-Anollés G (2011) Reductive evolution of proteomes and protein structures. Proc Natl Acad Sci 108(29):11954–11958PubMedCrossRefGoogle Scholar
  105. Wheeler Q, Assis L, Rieppel O (2013) Phylogenetics: heed the father of cladistics. Nature 496(7445):295–296PubMedCrossRefGoogle Scholar
  106. Wiley EO, Lieberman BS (2011) Phylogenetics: theory and practice of phylogenetic systematics. Wiley, New YorkCrossRefGoogle Scholar
  107. Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221PubMedPubMedCentralGoogle Scholar
  108. Woese CR (1998) Default taxonomy: Ernst Mayr’s view of the microbial world. Proc Natl Acad Sci U S A 95(19):11043–11046PubMedPubMedCentralCrossRefGoogle Scholar
  109. Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci 97(15):8392–8396PubMedCrossRefGoogle Scholar
  110. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci 87(12):4576–4579PubMedCrossRefGoogle Scholar
  111. Wolf YI, Koonin EV (2013) Genome reduction as the dominant mode of evolution. Bioessays 35(9):829–837PubMedPubMedCentralCrossRefGoogle Scholar
  112. Worth CL, Gong S, Blundell TL (2009) Structural and functional constraints in the evolution of protein families. Nat Rev Mol Cell Biol 10(10):709–720PubMedCrossRefGoogle Scholar
  113. Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci U S A 82(13):4443–4447PubMedPubMedCentralCrossRefGoogle Scholar
  114. Yang S, Doolittle RF, Bourne PE (2005) Phylogeny determined by protein domain content. Proc Natl Acad Sci U S A 102(2):373–378PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU, Stott MB, Nunoura T, Banfield JF, Schramm A, Baker BJ, Spang A, Ettema TJG (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541(7637):353–358PubMedCrossRefPubMedCentralGoogle Scholar
  116. Zmasek CM, Godzik A (2011) Strong functional patterns in the evolution of eukaryotic genomes revealed by the reconstruction of ancestral protein domain repertoires. Genome Biol 12(1):R4PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zuckerkandl E, Pauling L (1965a) Evolutionary divergence and convergence in proteins. In: Vogel VBH (ed) Evolving gene and proteins. Academic Press, New York, pp 97–166CrossRefGoogle Scholar
  118. Zuckerkandl E, Pauling L (1965b) Molecules as documents of evolutionary history. J Theor Biol 8(2):357–366PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology, Section of Microbial EcologyLund UniversityLundSweden
  2. 2.Department of Cell and Molecular Biology, Section of Structural and Molecular BiologyUppsala UniversityUppsalaSweden

Personalised recommendations