Molecular Mechanisms of Fungal Adaptive Evolution

  • Yongjie Zhang
  • Jianping XuEmail author
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB)


Fungi are ubiquitously distributed in almost all ecological niches in Earth’s biosphere, from underground soils to the stratosphere, from deserts to freshwater and marine aquatic environments, and from natural to human-made environments. They interact with and impact the health of plants, animals (including humans), and other microbes. As such, fungi have evolved a diversity of genetic and physiological traits to meet their ecological demands. In this chapter, we describe the investigative approaches and provide an overview of recent research results demonstrating the molecular mechanisms involved in fungal adaptations to unusual temperature, drought/low water activity, antifungal drugs, salt, and host defenses. We draw representative examples from natural population surveys, analyses of experimentally evolved populations, molecular genetic studies, and comparative genomics, transcriptomics, proteomics, and metabolomics. Together, these studies indicate both unique and shared mechanisms underlying fungal adaptations to both natural and human-made environments.



The research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada (J.X.), the Natural Science Foundation of Shanxi Province (201601D011065; Y.Z.), and the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (Y.Z.).


  1. Alexopoulos CJ, Mims CW, Blackwell MM (1996) Introductory mycology, 4th edn. Wiley, New YorkGoogle Scholar
  2. Alspaugh JA (2015) Virulence mechanisms and Cryptococcus neoformans pathogenesis. Fungal Genet Biol 78:55–58CrossRefGoogle Scholar
  3. Ashu EE, Hagen F, Chowdhary A, Meis JF, Xu J (2017) Global population genetic analysis of Aspergillus fumigatus. mSphere 2(1):e00019–e00017CrossRefGoogle Scholar
  4. Blasi B, Tafer H, Tesei D, Sterflinger K (2015) From glacier to sauna: RNA-Seq of the human pathogen black fungus Exophiala dermatitidis under varying temperature conditions exhibits common and novel fungal response. PLoS One 10(6):e0127103CrossRefGoogle Scholar
  5. Blum G, Perkhofer S, Haas H, Schrettl M, Wurzner R, Dierich MP, Lass-Florl C (2008) Potential basis for amphotericin B resistance in Aspergillus terreus. Antimicrob Agents Chemother 52(4):1553–1555CrossRefGoogle Scholar
  6. Brem FM, Lips KR (2008) Batrachochytrium dendrobatidis infection patterns among Panamanian amphibian species, habitats and elevations during epizootic and enzootic stages. Dis Aquat Org 81(3):189–202CrossRefGoogle Scholar
  7. Bruckmann A, Hensbergen PJ, Balog CIA, Deelder AM, Brandt R, Snoek ISI, Steensma HY, van Heusden GPH (2009) Proteome analysis of aerobically and anaerobically grown Saccharomyces cerevisiae cells. J Proteomics 71(6):662–669CrossRefGoogle Scholar
  8. Calahan D, Dunham M, DeSevo C, Koshland DE (2011) Genetic analysis of desiccation tolerance in Saccharomyces cerevisiae. Genetics 189(2):507–519CrossRefGoogle Scholar
  9. Chang H, Ashu E, Sharma C, Kathuria S, Chowdhary A, Xu J (2016) Diversity and origins of Indian multi-triazole resistant strains of Aspergillus fumigatus. Mycoses 59(7):450–466CrossRefGoogle Scholar
  10. Cheawchanlertfa P, Cheevadhanarak S, Tanticharoen M, Maresca B, Laoteng K (2011) Up-regulated expression of desaturase genes of Mucor rouxii in response to low temperature associates with pre-existing cellular fatty acid constituents. Mol Biol Rep 38(5):3455–3462CrossRefGoogle Scholar
  11. Chen C, Qi HJ, Shen YF, Pickrell J, Przeworski M (2017) Contrasting determinants of mutation rates in germline and soma. Genetics 207(1):255–267CrossRefGoogle Scholar
  12. Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PloS One 2(5):e457CrossRefGoogle Scholar
  13. de Vries FT, Liiri ME, Bjørnlund L, Bowker MA, Christensen S, Setälä HM, Bardgett RD (2012) Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Change 2(4):276–280CrossRefGoogle Scholar
  14. Derengowski LS, Paes HC, Albuquerque P, Tavares AHFP, Fernandes L, Silva-Pereira I, Casadevall A (2013) The transcriptional response of Cryptococcus neoformans to ingestion by Acanthamoeba castellanii and macrophages provides insights into the evolutionary adaptation to the mammalian host. Eukaryot Cell 12(5):761–774CrossRefGoogle Scholar
  15. Dong Y, Li Y, Zhao M, Jing M, Liu X, Liu M, Guo X, Zhang X, Chen Y, Liu Y, Liu Y, Ye W, Zhang H, Wang Y, Zheng X, Wang P, Zhang Z (2015) Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. PLoS Pathog 11(4):e1004801CrossRefGoogle Scholar
  16. Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, Glass NL, Taylor JW (2011) Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc Natl Acad Sci USA 108(7):2831–2836CrossRefGoogle Scholar
  17. Espinel-Ingroff A (2008) Mechanisms of resistance to antifungal agents: yeasts and filamentous fungi. Rev Iberoam Micol 25(2):101–106CrossRefGoogle Scholar
  18. Ferreira AS, Totola MR, Kasuya MCM, Araujo EF, Borges AC (2005) Small heat shock proteins in the development of thermotolerance in Pisolithus sp. J Therm Biol 30(8):595–602CrossRefGoogle Scholar
  19. Franca MB, Panek AD, Eleutherio ECA (2005) The role of cytoplasmic catalase in dehydration tolerance of Saccharomyces cerevisiae. Cell Stress Chaperon 10(3):167–170CrossRefGoogle Scholar
  20. Georg RC, Stefani RMP, Gomes SL (2009) Environmental stresses inhibit splicing in the aquatic fungus Blastocladiella emersonii. BMC Microbiol 9:231CrossRefGoogle Scholar
  21. Guhr A, Borken W, Spohn M, Matzner E (2015) Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. Proc Natl Acad Sci USA 112(47):14647–14651CrossRefGoogle Scholar
  22. Guimaraes AJ, Nakayasu ES, Sobreira TJP, Cordero RJB, Nimrichter L, Almeida IC, Nosanchuk JD (2011) Histoplasma capsulatum heat-shock 60 orchestrates the adaptation of the fungus to temperature stress. PLoS One 6(2):e14660CrossRefGoogle Scholar
  23. Horn BW, Lichtwardt RW (1981) Studies on the nutritional relationship of larval Aedes aegypti (Diptera: Culicidae) with Smittium culisetae (Trichomycetes). Mycologia 73:724–740CrossRefGoogle Scholar
  24. Hoshino T, Xiao N, Tkachenko OB (2009) Cold adaptation in the phytopathogenic fungi causing snow molds. Mycoscience 50(1):26–38CrossRefGoogle Scholar
  25. Hu X, Zhang YJ, Xiao GH, Zheng P, Xia YL, Zhang XY, St Leger RJ, Zhong LX, Shu WC (2013) Genome survey uncovers the secrets of sex and lifestyle in caterpillar fungus. Chinese Sci Bull 58(23):2846–2854CrossRefGoogle Scholar
  26. Ianutsevich EA, Danilova OA, Groza NV, Kotlova ER, Tereshina VM (2016) Heat shock response of thermophilic fungi: membrane lipids and soluble carbohydrates under elevated temperatures. Microbiology 162:989–999CrossRefGoogle Scholar
  27. Jancic S, Frisvad JC, Kocev D, Gostincar C, Dzeroski S, Gunde-Cimerman N (2016a) Production of secondary metabolites in extreme environments: food- and airborne Wallemia spp. produce toxic metabolites at hypersaline conditions. PLoS One 11(12):e0169116CrossRefGoogle Scholar
  28. Jancic S, Zalar P, Kocev D, Schroers H-J, Dzeroski S, Gunde-Cimerman N (2016b) Halophily reloaded: new insights into the extremophilic life-style of Wallemia with the description of Wallemia hederae sp nov. Fungal Divers 76(1):97–118CrossRefGoogle Scholar
  29. Kashyap PL, Rai A, Singh R, Chakdar H, Kumar S, Srivastava AK (2016) Deciphering the salinity adaptation mechanism in Penicilliopsis clavariiformis AP, a rare salt tolerant fungus from mangrove. J Basic Microb 56(7):779–791CrossRefGoogle Scholar
  30. Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-Seilaniantz A, Bailey K, Holub E, Studholme DJ, MacLean D, Jones JDG (2011) Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. PLoS Biol 9(7):e1001094CrossRefGoogle Scholar
  31. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby’s dictionary of the fungi, 10th edn. CAB International, WallingfordCrossRefGoogle Scholar
  32. Köhler JR, Casadevall A, Perfect J (2015) The spectrum of fungi that infects humans. CSH Perspect Med 5(1):a019273Google Scholar
  33. Kohn LM, Anderson JB (2014) The underlying structure of adaptation under strong selection in 12 experimental yeast populations. Eukaryot Cell 13(9):1200–1206CrossRefGoogle Scholar
  34. Krajaejun T, Lerksuthirat T, Garg G, Lowhnoo T, Yingyong W, Khositnithikul R, Tangphatsornruang S, Suriyaphol P, Ranganathan S, Sullivan TD (2014) Transcriptome analysis reveals pathogenicity and evolutionary history of the pathogenic oomycete Pythium insidiosum. Fungal Biol 118(7):640–653CrossRefGoogle Scholar
  35. Krappmann S (2017) CRISPR-Cas9, the new kid on the block of fungal molecular biology. Med Mycol 55(1):16–23CrossRefGoogle Scholar
  36. Kwast KE, Lai L-C, Menda N, James DT, Aref S, Burke PV (2002) Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response. J Bacteriol 184(1):250–265CrossRefGoogle Scholar
  37. Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, Bicanic TA, Castaneda E, Chang YC, Chen J, Cogliati M, Dromer F, Ellis D, Filler SG, Fisher MC, Harrison TS, Holland SM, Kohno S, Kronstad JW, Lazera M, Levitz SM, Lionakis MS, May RC, Ngamskulrongroj P, Pappas PG, Perfect JR, Rickerts V, Sorrell TC, Walsh TJ, Williamson PR, Xu J, Zelazny AM, Casadevall A (2017) The case for adopting the “species complex” nomenclature for the etiologic agents of Cryptococcosis. mSphere 2(1):e00357-16CrossRefGoogle Scholar
  38. Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75(20):6415–6421CrossRefGoogle Scholar
  39. Leong S-lL, Pettersson OV, Rice T, Hocking AD, Schnurer J (2011) The extreme xerophilic mould Xeromyces bisporus - Growth and competition at various water activities. Int J Food Microbiol 145(1):57–63CrossRefGoogle Scholar
  40. Leong S-lL, Lantz H, Pettersson OV, Frisvad JC, Thrane U, Heipieper HJ, Dijksterhuis J, Grabherr M, Pettersson M, Tellgren-Roth C, Schnurer J (2015) Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus, the most xerophilic organism isolated to date. Environ Microbiol 17(2):496–513CrossRefGoogle Scholar
  41. Ma Q, Jin K, Peng G, Xia Y (2015) An ENA ATPase, MaENA1, of Metarhizium acridum influences the Na+-, thermo- and UV-tolerances of conidia and is involved in multiple mechanisms of stress tolerance. Fungal Genet Biol 83:68–77CrossRefGoogle Scholar
  42. Ma Z, Zhu L, Song T, Wang Y, Zhang Q, Xia Y, Qiu M, Lin Y, Li H, Kong L, Fang Y, Ye W, Wang Y, Dong S, Zheng X, Tyler BM, Wang Y (2017) A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 335(6326):710–714CrossRefGoogle Scholar
  43. Mauch RM, Cunha VO, Dias ALT (2013) The copper interference with the melanogenesis of Cryptococcus neoformans. Rev Inst Med Trop São Paulo 55(2):117–120CrossRefGoogle Scholar
  44. Micheluz A, Manente S, Tigini V, Prigione V, Pinzari F, Ravagnan G, Varese GC (2015) The extreme environment of a library: xerophilic fungi inhabiting indoor niches. Int Biodeter Biodegr 99:1–7CrossRefGoogle Scholar
  45. Miskei M, Karanyi Z, Pocsi I (2009) Annotation of stress-response proteins in the aspergilli. Fungal Genet Biol 46(Suppl 1):S105–S120CrossRefGoogle Scholar
  46. Mukherjee A, Das D, Mondal SK, Biswas R, Das TK, Boujedaini N, Khuda-Bukhsh AR (2010) Tolerance of arsenate-induced stress in Aspergillus niger, a possible candidate for bioremediation. Ecotox Environ Safe 73(2):172–182CrossRefGoogle Scholar
  47. Murata Y, Homma T, Kitagawa E, Momose Y, Sato MS, Odani M, Shimizu H, Hasegawa-Mizusawa M, Matsumoto R, Mizukami S, Fujita K, Parveen M, Komatsu Y, Iwahashi H (2006) Genome-wide expression analysis of yeast response during exposure to 4°C. Extremophiles 10(2):117–128CrossRefGoogle Scholar
  48. O’Meara TR, Hay C, Price MS, Giles S, Alspaugh JA (2010) Cryptococcus neoformans histone acetyltransferase Gcn5 regulates fungal adaptation to the host. Eukaryot Cell 9(8):1193–1202CrossRefGoogle Scholar
  49. Oberson J, Rawyler A, Brändle R, Canevascini G (1999) Analysis of the heat-shock response displayed by two Chaetomium species originating from different thermal environments. Fungal Genet Biol 26(3):178–189CrossRefGoogle Scholar
  50. Oetari A, Susetyo-Salim T, Sjamsuridzal W, Suherman EA, Monica M, Wongso R, Fitri R, Nurlaili DG, Ayu DC, Teja TP (2016) Occurrence of fungi on deteriorated old dluwang manuscripts from Indonesia. Int Biodeter Biodegr 114:94–103CrossRefGoogle Scholar
  51. Oliver BG, Silver PM, White TC (2005) Evolution of drug resistance in pathogenic fungi. In: Xu JP (ed) Evolutionary genetics of fungi. Horizon Bioscience, Norfolk, pp 253–288Google Scholar
  52. Ortiz-Urquiza A, Keyhani NO (2013) Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects 4(3):357–374CrossRefGoogle Scholar
  53. Padamsee M, Kumar TKA, Riley R, Binder M, Boyd A, Calvo AM, Furukawa K, Hesse C, Hohmann S, James TY, LaButti K, Lapidus A, Lindquist E, Lucas S, Miller K, Shantappa S, Grigoriev IV, Hibbett DS, McLaughlin DJ, Spatafora JW, Aime MC (2012) The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genet Biol 49(3):217–226CrossRefGoogle Scholar
  54. Pawlowski AC, Wang W, Koteva K, Barton HA, McArthur AG, Wright GD (2016) A diverse intrinsic antibiotic resistome from a cave bacterium. Nat Commun 7:13803CrossRefGoogle Scholar
  55. Pemán J, Cantón E, Espinel-Ingroff A (2009) Antifungal drug resistance mechanisms. Expert Rev Anti Infect Ther 7(4):453–460CrossRefGoogle Scholar
  56. Perlin DS (2007) Resistance to echinocandin-class antifungal drugs. Drug Resist Update 10(3):121–130CrossRefGoogle Scholar
  57. Pettersson OV, Leong S-lL (2001) Fungal Xerophiles (Osmophiles). In: eLS (Encyclopaedia of Life Sciences). Wiley, ChichesterGoogle Scholar
  58. Pfaller MA (2012) Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med 125(1 Suppl):S3–S13CrossRefGoogle Scholar
  59. Raghukumar C, Raghukumar S (1998) Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquatic Microbial Ecology 15(2):153–163CrossRefGoogle Scholar
  60. Ratnakumar S, Hesketh A, Gkargkas K, Wilson M, Rash BM, Hayes A, Tunnacliffe A, Oliver SG (2011) Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. Mol BioSyst 7(1):139–149CrossRefGoogle Scholar
  61. Ropars J, de la Vega RCR, Lopez-Villavicencio M, Gouzy J, Sallet E, Dumas E, Lacoste S, Debuchy R, Dupont J, Branca A, Giraud T (2015) Adaptive horizontal gene transfers between multiple cheese-associated fungi. Curr Biol 25(19):2562–2569CrossRefGoogle Scholar
  62. Rosas AL, Casadevall A (1997) Melanization affects susceptibility of Cryptococcus neoformans to heat and cold. FEMS Microbiol Lett 153(2):265–272CrossRefGoogle Scholar
  63. Sancho LG, de la Torre R, Horneck G, Ascaso C, de Los Rios A, Pintado A, Wierzchos J, Schuster M (2007) Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology. 7(3):443–454CrossRefGoogle Scholar
  64. Singh J, Kumar D, Ramakrishnan N, Singhal V, Jervis J, Garst JF, Slaughter SM, DeSantis AM, Potts M, Helm RF (2005) Transcriptional response of Saccharomyces cerevisiae to desiccation and rehydration. Appl Environ Microbiol 71(12):8752–8763CrossRefGoogle Scholar
  65. Singh RS, Xu JP, Kulathinal R (2012) Evolution in the fast lane: rapid evolution of genes and genetic systems. Oxford University Press, OxfordCrossRefGoogle Scholar
  66. Six J (2012) Soil science: fungal friends against drought. Nat Clim Change 2(4):234–235CrossRefGoogle Scholar
  67. Skrinjar M, Blagojev N, Petrovic L, Soso V, Veskovic-Moracanin S, Skaljac S (2012) Diversity of moulds on the Petrovska klobasa raw materials, casings and in the processing unit environment. Rom Biotech Lett 17(6):7726–7736Google Scholar
  68. Snoek ISI, Steensma HY (2007) Factors involved in anaerobic growth of Saccharomyces cerevisiae. Yeast 24(1):1–10CrossRefGoogle Scholar
  69. Steen BR, Lian T, Zuyderduyn S, MacDonald WK, Marra M, Jones SJM, Kronstad JW (2002) Temperature-regulated transcription in the pathogenic fungus Cryptococcus neoformans. Genome Res 12(9):1386–1400CrossRefGoogle Scholar
  70. Steenbergen JN, Shuman HA, Casadevall A (2001) Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc Natl Acad Sci USA 98(26):15245–15250CrossRefGoogle Scholar
  71. Su Y, Jiang X, Wu W, Wang M, Hamid MI, Xiang M, Liu X (2016) Genomic, transcriptomic and proteomic analysis provide insights into the cold adaptation mechanism of the obligate psychrophilic fungus Mrakia psychrophila. G3 6(11):3603–3613PubMedGoogle Scholar
  72. Tai SL, Boer VM, Daran-Lapujade P, Walsh MC, de Winde JH, Daran JM, Pronk JT (2005) Two-dimensional transcriptome analysis in chemostat cultures. Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae. J Biol Chem 280(1):437–447CrossRefGoogle Scholar
  73. ter Linde JJ, Liang H, Davis RW, Steensma HY, van Dijken JP, Pronk JT (1999) Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J Bacteriol 181(24):7409–7413PubMedPubMedCentralGoogle Scholar
  74. Tereshina VM, Memorskaya AS (2005) Adaptation of Flammulina velutipes to hypothermia tip in natural environments: the role of lipids and carbohydrates. Microbiology 74(3):279–283CrossRefGoogle Scholar
  75. Tesei D, Marzban G, Zakharova K, Isola D, Selbmann L, Sterflinger K (2012) Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures. Fungal Biol 116(8):932–940CrossRefGoogle Scholar
  76. Tsuji M (2016) Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis. R Soc Open Sci 3(7):160106CrossRefGoogle Scholar
  77. Vogan AA, Khankhet J, Samarasinghe H, Xu J (2016) Identification of QTLs associated with virulence related traits and drug resistance in Cryptococcus neoformans. G3 6(9):2745–2759CrossRefGoogle Scholar
  78. Vytrasova J, Pribanova P, Marvanova L (2002) Occurrence of xerophilic fungi in bakery gingerbread production. Int J Food Microbiol 72(1-2):91–96CrossRefGoogle Scholar
  79. Wang Y, Casadevall A (1994) Decreased susceptibility of melanized Cryptococcus neoformans to UV light. Appl Environ Microbiol 60:3864–3866PubMedPubMedCentralGoogle Scholar
  80. Wang Y, Zhang X, Zhou Q, Zhang X, Wei J (2015) Comparative transcriptome analysis of the lichen-forming fungus Endocarpon pusillum elucidates its drought adaptation mechanisms. Sci China Life Sci 58(1):89–100CrossRefGoogle Scholar
  81. Wang Y, White MM, Kvist S, Moncalvo J-M (2016) Genome-wide survey of gut fungi (Harpellales) reveals the first horizontally transferred ubiquitin gene from a mosquito host. Mol Biol Evol 33(10):2544–2554CrossRefGoogle Scholar
  82. Welch AZ, Gibney PA, Botstein D, Koshland DE (2013) TOR and RAS pathways regulate desiccation tolerance in Saccharomyces cerevisiae. Mol Biol Cell 24(2):115–128CrossRefGoogle Scholar
  83. Wichadakul D, Kobmoo N, Ingsriswang S, Tangphatsornruang S, Chantasingh D, Luangsa-ard JJ, Eurwilaichitr L (2015) Insights from the genome of Ophiocordyceps polyrhachis-furcata to pathogenicity and host specificity in insect fungi. BMC Genomics 16:881CrossRefGoogle Scholar
  84. Williams MC (2001) Trichomycetes a brief review of research. In: Misra JK, Horn B (eds) Trichomycetes and other fungal groups. Science Publishers, Enfield, NH, p 19Google Scholar
  85. Xiao Y, Cheng X, Liu J, Li C, Nong W, Bian Y, Cheung MK, Kwan HS (2016) Population genomic analysis uncovers environmental stress-driven selection and adaptation of Lentinula edodes population in China. Sci Rep 6:36789CrossRefGoogle Scholar
  86. Xu J (2005) Evolutionary genetics of fungi. Horizon Bioscience, NorfolkGoogle Scholar
  87. Xu J (2016) Fungal DNA barcoding. Genome 59(11):913–932CrossRefGoogle Scholar
  88. Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, Najar FZ, Atiyeh HK, Wilkins MR, Elshahed MS (2013) The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ Microbiol 79(15):4620–4634CrossRefGoogle Scholar
  89. Zampieri E, Balestrini R, Kohler A, Abba S, Martin F, Bonfante P (2011) The Perigord black truffle responds to cold temperature with an extensive reprogramming of its transcriptional activity. Fungal Genet Biol 48(6):585–591CrossRefGoogle Scholar
  90. Zhang T, Wei J (2011) Survival analyses of symbionts isolated from Endocarpon pusillum Hedwig to desiccation and starvation stress. Sci China Life Sci 54(5):480–489CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Life SciencesShanxi UniversityTaiyuanChina
  2. 2.Department of BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations