Sulfur Assimilation and Trafficking in Methanogens

  • John J. PeronaEmail author
  • Benjamin Julius Rauch
  • Camden M. Driggers
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB)


Methanogens are ancient obligate anaerobes, originating in an early Earth period before oxygen accumulated in the atmosphere and oceans. Unlike aerobic cells, all methanogens that persist in highly sulfidic, anaerobic niches are able to grow with sulfide as the sole sulfur source. These organisms have retained a unique apparatus for the assimilation and distribution of sulfur from the ambient environment. Recent work has revealed the presence of a unique set of at least six highly conserved genes likely responsible for sulfide uptake and synthesis of persulfide groups, cysteine, homocysteine, coenzyme M, coenzyme B, and cysteinyl-tRNACys. Phylogenetic studies show that these ancient sulfur assimilatory proteins share an evolutionary history with methanogenesis enzymes, suggesting that they played a key role in supporting the development of this metabolism. Little is yet known about most methanogen pathways that mobilize sulfur to form thiolated tRNA, iron-sulfur clusters, molybdopterin, and other important cofactors. However, for at least some of these pathways, it appears that the sulfur can be assimilated directly as sulfide, which is present at high intracellular levels without causing toxic effects. The many unique aspects of sulfur assimilation and trafficking in contemporary methanogens appear to be relics of ancient metabolic processes that were prevalent on the early anaerobic Earth.


  1. Aird BA, Heinrikson RL, Westley J (1987) Isolation and characterization of a prokaryotic sulfurtransferase. J Biol Chem 262:17327–17335PubMedGoogle Scholar
  2. Allen KD, White RH (2016) Occurrence and biosynthesis of 3-mercaptopropionic acid in Methanocaldococcus jannaschii. FEMS Microbiol Lett 363PubMedCrossRefGoogle Scholar
  3. Allen KD, Wegener G, White RH (2014) Discovery of multiple modified F(430) coenzymes in methanogens and anaerobic methanotrophic archaea suggests possible new roles for F(430) in nature. Appl Environ Microbiol 80:6403–6412PubMedPubMedCentralCrossRefGoogle Scholar
  4. Allen KD, Miller DV, Rauch BJ, Perona JJ, White RH (2015) Homocysteine is biosynthesized from aspartate semialdehyde and hydrogen sulfide in methanogenic archaea. Biochemistry 54:3129–3132PubMedCrossRefGoogle Scholar
  5. Atta M, Arragain S, Fontecave M, Mulliez E, Hunt JF, Luff JD, Forouhar F (2012) The methylthiolation reaction mediated by the radical-SAM enzymes. Biochim Biophys Acta 1824:1223–1230PubMedCrossRefGoogle Scholar
  6. Begley TP, Ealick SE, McLafferty FW (2012) Thiamin biosynthesis: still yielding fascinating biological chemistry. Biochem Soc Trans 40:555–560PubMedPubMedCentralCrossRefGoogle Scholar
  7. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242PubMedPubMedCentralCrossRefGoogle Scholar
  8. Black KA, Dos Santos PC (2015) Shared-intermediates in the biosynthesis of thio-cofactors: mechanism and functions of cysteine desulfurases and sulfur acceptors. Biochim Biophys Acta 1853:1470–1480PubMedCrossRefGoogle Scholar
  9. Blank CE (2009a) Phylogenomic dating–a method of constraining the age of microbial taxa that lack a conventional fossil record. Astrobiology 9:173–191PubMedCrossRefGoogle Scholar
  10. Blank CE (2009b) Phylogenomic dating–the relative antiquity of archaeal metabolic and physiological traits. Astrobiology 9:193–219PubMedCrossRefGoogle Scholar
  11. Blank CE, Kessler PS, Leigh JA (1995) Genetics in methanogens: transposon insertion mutagenesis of a Methanococcus maripaludis nifH gene. J Bacteriol 177:5773–5777PubMedPubMedCentralCrossRefGoogle Scholar
  12. Borup B, Ferry JG (2000) Cysteine biosynthesis in the Archaea: Methanosarcina thermophila utilizes O-acetylserine sulfhydrylase. FEMS Microbiol Lett 189:205–210PubMedCrossRefGoogle Scholar
  13. Borziak K, Posner MG, Upadhyay A, Danson MJ, Bagby S, Dorus S (2014) Comparative genomic analysis reveals 2-oxoacid dehydrogenase complex lipoylation correlation with aerobiosis in archaea. PLoS One 9:e87063PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bouvier D, Labessan N, Clemancey M, Latour JM, Ravanat JL, Fontecave M, Atta M (2014) TtcA a new tRNA-thioltransferase with an Fe-S cluster. Nucleic Acids Res 42:7960–7970PubMedPubMedCentralCrossRefGoogle Scholar
  15. Boyd JM, Endrizzi JA, Hamilton TL, Christopherson MR, Mulder DW, Downs DM, Peters JW (2011) FAD binding by ApbE protein from Salmonella enterica: a new class of FAD-binding proteins. J Bacteriol 193:887–895PubMedCrossRefGoogle Scholar
  16. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073PubMedCrossRefGoogle Scholar
  17. Canfield DE, Habicht KS, Thamdrup B (2000) The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288:658–661PubMedCrossRefGoogle Scholar
  18. Carlson BA, Xu XM, Kryukov GV, Rao M, Berry MJ, Gladyshev VN, Hatfield DL (2004) Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase. Proc Natl Acad Sci U S A 101:12848–12853PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cipollone R, Ascenzi P, Visca P (2007) Common themes and variations in the rhodanese superfamily. IUBMB Life 59:51–59PubMedCrossRefGoogle Scholar
  20. Costa KC, Leigh JA (2014) Metabolic versatility in methanogens. Curr Opin Biotechnol 29:70–75PubMedCrossRefGoogle Scholar
  21. Cronan JE (2016) Assembly of lipoic acid on its cognate enzymes: an extraordinary and essential biosynthetic pathway. Microbiol Mol Biol Rev 80:429–450PubMedPubMedCentralCrossRefGoogle Scholar
  22. Daniels L, Belay N, Rajagopal BS (1986) Assimilatory reduction of sulfate and sulfite by methanogenic bacteria. Appl Environ Microbiol 51:703–709PubMedPubMedCentralGoogle Scholar
  23. Deka RK, Brautigam CA, Liu WZ, Tomchick DR, Norgard MV (2013) The TP0796 lipoprotein of Treponema pallidum is a bimetal-dependent FAD pyrophosphatase with a potential role in flavin homeostasis. J Biol Chem 288:11106–11121PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dridi B, Raoult D, Drancourt M (2011) Archaea as emerging organisms in complex human microbiomes. Anaerobe 17:56–63PubMedCrossRefGoogle Scholar
  25. Duin EC, Madadi-Kahkesh S, Hedderich R, Clay MD, Johnson MK (2002) Heterodisulfide reductase from Methanothermobacter marburgensis contains an active-site [4Fe-4S] cluster that is directly involved in mediating heterodisulfide reduction. FEBS Lett 512:263–268PubMedCrossRefGoogle Scholar
  26. Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK (1997) Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278:1457–1462PubMedCrossRefGoogle Scholar
  27. Eser BE, Zhang X, Chanani PK, Begley TP, Ealick SE (2016) From suicide enzyme to catalyst: the iron-dependent sulfide transfer in Methanococcus jannaschii thiamin thiazole biosynthesis. J Am Chem Soc 138:3639–3642PubMedPubMedCentralCrossRefGoogle Scholar
  28. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438PubMedCrossRefGoogle Scholar
  29. Forchhammer K, Bock A (1991) Selenocysteine synthase from Escherichia coli. Analysis of the reaction sequence. J Biol Chem 266:6324–6328PubMedGoogle Scholar
  30. Fraser WT, Blei E, Fry SC, Newman MF, Reay DS, Smith KA, McLeod AR (2015) Emission of methane, carbon monoxide, carbon dioxide and short-chain hydrocarbons from vegetation foliage under ultraviolet irradiation. Plant Cell Environ 38:980–989PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fukunaga R, Yokoyama S (2007a) Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea. Nat Struct Mol Biol 14:272–279PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fukunaga R, Yokoyama S (2007b) Structural insights into the second step of RNA-dependent cysteine biosynthesis in archaea: crystal structure of Sep-tRNA:Cys-tRNA synthase from Archaeoglobus fulgidus. J Mol Biol 370:128–141PubMedCrossRefPubMedCentralGoogle Scholar
  33. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber RD, Cann I, Graham DE, Grahame DA, Guss AM, Hedderich R, Ingram-Smith C, Kuettner HC, Krzycki JA, Leigh JA, Li W, Liu J, Mukhopadhyay B, Reeve JN, Smith K, Springer TA, Umayam LA, White O, White RH, Conway de Macario E, Ferry JG, Jarrell KF, Jing H, Macario AJ, Paulsen I, Pritchett M, Sowers KR, Swanson RV, Zinder SH, Lander E, Metcalf WW, Birren B (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542PubMedPubMedCentralCrossRefGoogle Scholar
  34. Graham DE (2011) 2-oxoacid metabolism in methanogenic CoM and CoB biosynthesis. Methods Enzymol 494:301–326PubMedCrossRefPubMedCentralGoogle Scholar
  35. Graham DE, White RH (2002) Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. Nat Prod Rep 19:133–147PubMedCrossRefPubMedCentralGoogle Scholar
  36. Graham DE, Xu H, White RH (2002) Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate-biosynthesizing enzymes. J Biol Chem 277:13421–13429PubMedCrossRefPubMedCentralGoogle Scholar
  37. Graham DE, Taylor SM, Wolf RZ, Namboori SC (2009) Convergent evolution of coenzyme M biosynthesis in the Methanosarcinales: cysteate synthase evolved from an ancestral threonine synthase. Biochem J 424:467–478PubMedCrossRefPubMedCentralGoogle Scholar
  38. Hauenstein SI, Perona JJ (2008) Redundant synthesis of cysteinyl-tRNACys in Methanosarcina mazei. J Biol Chem 283:22007–22017PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hauenstein SI, Hou YM, Perona JJ (2008) The homotetrameric phosphoseryl-tRNA synthetase from Methanosarcina mazei exhibits half-of-the-sites activity. J Biol Chem 283:21997–22006PubMedPubMedCentralCrossRefGoogle Scholar
  40. Helgadottir S, Sinapah S, Soll D, Ling J (2012) Mutational analysis of Sep-tRNA:Cys-tRNA synthase reveals critical residues for tRNA-dependent cysteine formation. FEBS Lett 586:60–63PubMedCrossRefGoogle Scholar
  41. Hepowit NL, de Vera IM, Cao S, Fu X, Wu Y, Uthandi S, Chavarria NE, Englert M, Su D, Sll D, Kojetin DJ, Maupin-Furlow JA (2016) Mechanistic insight into protein modification and sulfur mobilization activities of noncanonical E1 and associated ubiquitin-like proteins of Archaea. FEBS J 283:3567–3586PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hidese R, Mihara H, Esaki N (2011) Bacterial cysteine desulfurases: versatile key players in biosynthetic pathways of sulfur-containing biofactors. Appl Microbiol Biotechnol 91:47–61PubMedCrossRefGoogle Scholar
  43. Hohn MJ, Park HS, O’Donoghue P, Schnitzbauer M, Soll D (2006) Emergence of the universal genetic code imprinted in an RNA record. Proc Natl Acad Sci U S A 103:18095–18100PubMedPubMedCentralCrossRefGoogle Scholar
  44. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond Ser B Biol Sci 361:903–915CrossRefGoogle Scholar
  45. Hu Y, Ribbe MW (2011) Biosynthesis of nitrogenase FeMoco. Coord Chem Rev 255:1218–1224PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y, Dudek N, Relman DA, Finstad KM, Amundson R, Thomas BC, Banfield JF (2016) A new view of the tree of life. Nat Microbiol 1:16048PubMedCrossRefPubMedCentralGoogle Scholar
  47. Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M, Motohashi H, Fujii S, Matsunaga T, Yamamoto M, Ono K, Devarie-Baez NO, Xian M, Fukuto JM, Akaike T (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci U S A 111:7606–7611PubMedPubMedCentralCrossRefGoogle Scholar
  48. Itoh Y, Sekine S, Matsumoto E, Akasaka R, Takemoto C, Shirouzu M, Yokoyama S (2009) Structure of selenophosphate synthetase essential for selenium incorporation into proteins and RNAs. J Mol Biol 385:1456–1469PubMedCrossRefGoogle Scholar
  49. Jackson MR, Melideo SL, Jorns MS (2012) Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 51:6804–6815PubMedCrossRefPubMedCentralGoogle Scholar
  50. Jager G, Leipuviene R, Pollard MG, Qian Q, Bjork GR (2004) The conserved Cys-X1-X2-Cys motif present in the TtcA protein is required for the thiolation of cytidine in position 32 of tRNA from Salmonella enterica serovar Typhimurium. J Bacteriol 186:750–757PubMedPubMedCentralCrossRefGoogle Scholar
  51. Johnson EF, Mukhopadhyay B (2005) A new type of sulfite reductase, a novel coenzyme F420-dependent enzyme, from the methanarchaeon Methanocaldococcus jannaschii. J Biol Chem 280:38776–38786PubMedCrossRefGoogle Scholar
  52. Johnson EF, Mukhopadhyay B (2008) Coenzyme F420-dependent sulfite reductase-enabled sulfite detoxification and use of sulfite as a sole sulfur source by Methanococcus maripaludis. Appl Environ Microbiol 74:3591–3595PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kadaba NS, Kaiser JT, Johnson E, Lee A, Rees DC (2008) The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science 321:250–253PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kambampati R, Lauhon CT (1999) IscS is a sulfurtransferase for the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. Biochemistry 38:16561–16568PubMedCrossRefGoogle Scholar
  55. Kambampati R, Lauhon CT (2003) MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli. Biochemistry 42:1109–1117PubMedCrossRefGoogle Scholar
  56. Kamtekar S, Hohn MJ, Park HS, Schnitzbauer M, Sauerwald A, Soll D, Steitz TA (2007) Toward understanding phosphoseryl-tRNACys formation: the crystal structure of Methanococcus maripaludis phosphoseryl-tRNA synthetase. Proc Natl Acad Sci U S A 104:2620–2625PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kaster AK, Goenrich M, Seedorf H, Liesegang H, Wollherr A, Gottschalk G, Thauer RK (2011) More than 200 genes required for methane formation from H(2) and CO(2) and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. Archaea 2011:973848PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kessler D (2006) Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes. FEMS Microbiol Rev 30:825–840PubMedCrossRefGoogle Scholar
  59. Kim JH, Bothe JR, Alderson TR, Markley JL (2015) Tangled web of interactions among proteins involved in iron-sulfur cluster assembly as unraveled by NMR, SAXS, chemical crosslinking, and functional studies. Biochim Biophys Acta 1853:1416–1428PubMedCrossRefGoogle Scholar
  60. Kimura S, Suzuki T (2015) Iron-sulfur proteins responsible for RNA modifications. Biochim Biophys Acta 1853:1272–1283PubMedCrossRefGoogle Scholar
  61. Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou L, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, D’Andrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370PubMedCrossRefGoogle Scholar
  62. Klipcan L, Frenkel-Morgenstern M, Safro MG (2008) Presence of tRNA-dependent pathways correlates with high cysteine content in methanogenic Archaea. Trends Genet 24:59–63PubMedCrossRefGoogle Scholar
  63. Komatsoulis GA, Abelson J (1993) Recognition of tRNA(Cys) by Escherichia coli cysteinyl-tRNA synthetase. Biochemistry 32:7435–7444PubMedCrossRefGoogle Scholar
  64. Kotera M, Bayashi T, Hattori M, Tokimatsu T, Goto S, Mihara H, Kanehisa M (2010) Comprehensive genomic analysis of sulfur-relay pathway genes. Genome Inform 24:104–115PubMedGoogle Scholar
  65. Leigh JA (2000) Nitrogen fixation in methanogens: the archaeal perspective. Curr Issues Mol Biol 2:125–131PubMedGoogle Scholar
  66. Libiad M, Yadav PK, Vitvitsky V, Martinov M, Banerjee R (2014) Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J Biol Chem 289:30901–30910PubMedPubMedCentralCrossRefGoogle Scholar
  67. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189PubMedCrossRefGoogle Scholar
  68. Liu Y, Sieprawska-Lupa M, Whitman WB, White RH (2010) Cysteine is not the sulfur source for iron-sulfur cluster and methionine biosynthesis in the methanogenic archaeon Methanococcus maripaludis. J Biol Chem 285:31923–31929PubMedPubMedCentralCrossRefGoogle Scholar
  69. Liu Y, Dos Santos PC, Zhu X, Orlando R, Dean DR, Soll D, Yuan J (2012a) Catalytic mechanism of Sep-tRNA:Cys-tRNA synthase: sulfur transfer is mediated by disulfide and persulfide. J Biol Chem 287:5426–5433PubMedCrossRefGoogle Scholar
  70. Liu Y, Zhu X, Nakamura A, Orlando R, Soll D, Whitman WB (2012b) Biosynthesis of 4-thiouridine in tRNA in the methanogenic archaeon Methanococcus maripaludis. J Biol Chem 287(44):36683–36692PubMedPubMedCentralCrossRefGoogle Scholar
  71. Liu Y, Beer LL, Whitman WB (2012c) Methanogens: a window into ancient sulfur metabolism. Trends Microbiol 20:251–258PubMedCrossRefGoogle Scholar
  72. Liu Y, Beer LL, Whitman WB (2012d) Sulfur metabolism in archaea reveals novel processes. Environ Microbiol 14:2632–2644PubMedCrossRefGoogle Scholar
  73. Liu Y, Long F, Wang L, Soll D, Whitman WB (2014a) The putative tRNA 2-thiouridine synthetase Ncs6 is an essential sulfur carrier in Methanococcus maripaludis. FEBS Lett 588:873–877PubMedPubMedCentralCrossRefGoogle Scholar
  74. Liu Y, Nakamura A, Nakazawa Y, Asano N, Ford KA, Hohn MJ, Tanaka I, Yao M, Soll D (2014b) Ancient translation factor is essential for tRNA-dependent cysteine biosynthesis in methanogenic archaea. Proc Natl Acad Sci U S A 111(29):10520–10525PubMedPubMedCentralCrossRefGoogle Scholar
  75. Liu Y, Vinyard DJ, Reesbeck ME, Suzuki T, Manakongtreecheep K, Holland PL, Brudvig GW, Soll D (2016) A [3Fe-4S] cluster is required for tRNA thiolation in archaea and eukaryotes. Proc Natl Acad Sci U S A 113(45):12703–12708PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lombard J, Moreira D (2011) Early evolution of the biotin-dependent carboxylase family. BMC Evol Biol 11:232PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lucas M, Encinar JA, Arribas EA, Oyenarte I, Garcia IG, Kortazar D, Fernandez JA, Mato JM, Martinez-Chantar ML, Martinez-Cruz LA (2010) Binding of S-methyl-5’-thioadenosine and S-adenosyl-L-methionine to protein MJ0100 triggers an open-to-closed conformational change in its CBS motif pair. J Mol Biol 396:800–820PubMedCrossRefGoogle Scholar
  78. Lyons TW, Gill BC (2010) Ancient sulfur cycling and oxygenation of the early biosphere. Elements 6:93–99CrossRefGoogle Scholar
  79. Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, Helm M, Bujnicki JM, Grosjean H (2013) MODOMICS: a database of RNA modification pathways--2013 update. Nucleic Acids Res 41:D262–D267PubMedCrossRefGoogle Scholar
  80. Major TA, Burd H, Whitman WB (2004) Abundance of 4Fe-4S motifs in the genomes of methanogens and other prokaryotes. FEMS Microbiol Lett 239:117–123PubMedCrossRefGoogle Scholar
  81. Marinoni EN, de Oliveira JS, Nicolet Y, Raulfs EC, Amara P, Dean DR, Fontecilla-Camps JC (2012) (IscS-IscU)2 complex structures provide insights into Fe2S2 biogenesis and transfer. Angew Chem Int Ed Eng 51:5439–5442CrossRefGoogle Scholar
  82. Maupin-Furlow JA (2013) Ubiquitin-like proteins and their roles in archaea. Trends Microbiol 21:31–38PubMedCrossRefGoogle Scholar
  83. Maupin-Furlow JA (2014) Prokaryotic ubiquitin-like protein modification. Annu Rev Microbiol 68:155–175PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mayr S, Latkoczy C, Kruger M, Gunther D, Shima S, Thauer RK, Widdel F, Jaun B (2008) Structure of an F430 variant from archaea associated with anaerobic oxidation of methane. J Am Chem Soc 130:10758–10767PubMedCrossRefGoogle Scholar
  85. Mayumi D, Mochimaru H, Tamaki H, Yamamoto K, Yoshioka H, Suzuki Y, Kamagata Y, Sakata S (2016) Methane production from coal by a single methanogen. Science 354:222–225PubMedCrossRefGoogle Scholar
  86. McCloskey JA, Graham DE, Zhou S, Crain PF, Ibba M, Konisky J, Soll D, Olsen GJ (2001) Post-transcriptional modification in archaeal tRNAs: identities and phylogenetic relations of nucleotides from mesophilic and hyperthermophilic Methanococcales. Nucleic Acids Res 29:4699–4706PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mendel RR, Leimkuhler S (2015) The biosynthesis of the molybdenum cofactors. J Biol Inorg Chem 20:337–347PubMedCrossRefGoogle Scholar
  88. Miller D, O’Brien K, Xu H, White RH (2014) Identification of a 5’-deoxyadenosine deaminase in Methanocaldococcus jannaschii and its possible role in recycling the radical S-adenosylmethionine enzyme reaction product 5’-deoxyadenosine. J Bacteriol 196:1064–1072PubMedPubMedCentralCrossRefGoogle Scholar
  89. Min B, Pelaschier JT, Graham DE, Tumbula-Hansen D, Soll D (2002) Transfer RNA-dependent amino acid biosynthesis: an essential route to asparagine formation. Proc Natl Acad Sci U S A 99:2678–2683PubMedPubMedCentralCrossRefGoogle Scholar
  90. Mino K, Ishikawa K (2003) A novel O-phospho-L-serine sulfhydrylation reaction catalyzed by O-acetylserine sulfhydrylase from Aeropyrum pernix K1. FEBS Lett 551:133–138PubMedCrossRefGoogle Scholar
  91. Miranda HV, Nembhard N, Su D, Hepowit N, Krause DJ, Pritz JR, Phillips C, Soll D, Maupin-Furlow JA (2011) E1- and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea. Proc Natl Acad Sci U S A 108:4417–4422PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mishanina TV, Libiad M, Banerjee R (2015) Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 11:457–464PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mueller EG (2006) Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nat Chem Biol 2:185–194PubMedCrossRefGoogle Scholar
  94. Mueller EG, Palenchar PM (1999) Using genomic information to investigate the function of ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis. Protein Sci 8:2424–2427PubMedPubMedCentralCrossRefGoogle Scholar
  95. Mueller EG, Palenchar PM, Buck CJ (2001) The role of the cysteine residues of ThiI in the generation of 4-thiouridine in tRNA. J Biol Chem 276:33588–33595PubMedCrossRefGoogle Scholar
  96. Neumann P, Lakomek K, Naumann PT, Erwin WM, Lauhon CT, Ficner R (2014) Crystal structure of a 4-thiouridine synthetase-RNA complex reveals specificity of tRNA U8 modification. Nucleic Acids Res 42:6673–6685PubMedPubMedCentralCrossRefGoogle Scholar
  97. Noma A, Sakaguchi Y, Suzuki T (2009) Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Res 37:1335–1352PubMedPubMedCentralCrossRefGoogle Scholar
  98. Numata T, Fukai S, Ikeuchi Y, Suzuki T, Nureki O (2006a) Structural basis for sulfur relay to RNA mediated by heterohexameric TusBCD complex. Structure 14:357–366PubMedCrossRefGoogle Scholar
  99. Numata T, Ikeuchi Y, Fukai S, Suzuki T, Nureki O (2006b) Snapshots of tRNA sulphuration via an adenylated intermediate. Nature 442:419–424PubMedCrossRefGoogle Scholar
  100. O’Donoghue P, Sethi A, Woese CR, Luthey-Schulten ZA (2005) The evolutionary history of Cys-tRNACys formation. Proc Natl Acad Sci U S A 102:19003–19008PubMedPubMedCentralCrossRefGoogle Scholar
  101. Pagnier A, Nicolet Y, Fontecilla-Camps JC (2015) IscS from Archaeoglobus fulgidus has no desulfurase activity but may provide a cysteine ligand for [Fe2S2] cluster assembly. Biochim Biophys Acta 1853:1457–1463PubMedCrossRefGoogle Scholar
  102. Palioura S, Sherrer RL, Steitz TA, Soll D, Simonovic M (2009) The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation. Science 325:321–325PubMedPubMedCentralCrossRefGoogle Scholar
  103. Park CM, Weerasinghe L, Day JJ, Fukuto JM, Xian M (2015) Persulfides: current knowledge and challenges in chemistry and chemical biology. Mol BioSyst 11:1775–1785PubMedPubMedCentralCrossRefGoogle Scholar
  104. Perona JJ, Hadd A (2012) Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry 51:8705–8729PubMedCrossRefGoogle Scholar
  105. Probst AJ, Moissl-Eichinger C (2015) “Altiarchaeales”: uncultivated archaea from the subsurface. Life (Basel) 5:1381–1395Google Scholar
  106. Ramabhadran TV, Jagger J (1976) Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation. Proc Natl Acad Sci U S A 73:59–63PubMedPubMedCentralCrossRefGoogle Scholar
  107. Rauch BJ, Perona JJ (2016) Efficient sulfide assimilation in Methanosarcina acetivorans is mediated by the MA1715 protein. J Bacteriol 198:1974–1983PubMedPubMedCentralCrossRefGoogle Scholar
  108. Rauch BJ, Gustafson A, Perona JJ (2014) Novel proteins for homocysteine biosynthesis in anaerobic microorganisms. Mol Microbiol 94:1330–1342PubMedCrossRefGoogle Scholar
  109. Rauch BJ, Klimek J, David L, Perona JJ (2017) Persulfide formation mediates cysteine and homocysteine biosynthesis in Methanosarcina acetivorans. Biochemistry 56(8):1051–1061PubMedCrossRefGoogle Scholar
  110. Reich HJ, Hondal RJ (2016) Why Nature Chose Selenium. ACS Chem Biol 11:821–841PubMedCrossRefGoogle Scholar
  111. Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F (2013) Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta 1827:455–469PubMedCrossRefGoogle Scholar
  112. Rodriguez-Hernandez A, Spears JL, Gaston KW, Limbach PA, Gamper H, Hou YM, Kaiser R, Agris PF, Perona JJ (2013) Structural and mechanistic basis for enhanced translational efficiency by 2-thiouridine at the tRNA anticodon wobble position. J Mol Biol 425(20):3888–3906PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sauerwald A, Zhu W, Major TA, Roy H, Palioura S, Jahn D, Whitman WB, Yates JR, Ibba M 3rd, Soll D (2005) RNA-dependent cysteine biosynthesis in archaea. Science 307:1969–1972PubMedCrossRefGoogle Scholar
  114. Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–608PubMedCrossRefGoogle Scholar
  115. Schwartz CJ, Djaman O, Imlay JA, Kiley PJ (2000) The cysteine desulfurase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli. Proc Natl Acad Sci U S A 97:9009–9014PubMedPubMedCentralCrossRefGoogle Scholar
  116. Sekowska A, Kung HF, Danchin A (2000) Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol 2:145–177PubMedGoogle Scholar
  117. Shigi N (2014) Biosynthesis and functions of sulfur modifications in tRNA. Front Genet 5:67PubMedPubMedCentralCrossRefGoogle Scholar
  118. Sousa FL, Nelson-Sathi S, Martin WF (2016) One step beyond a ribosome: the ancient anaerobic core. Biochim Biophys Acta 1857:1027–1038PubMedPubMedCentralCrossRefGoogle Scholar
  119. Spry C, Kirk K, Saliba KJ (2008) Coenzyme a biosynthesis: an antimicrobial drug target. FEMS Microbiol Rev 32:56–106PubMedCrossRefGoogle Scholar
  120. Su D, Ojo TT, Soll D, Hohn MJ (2012) Selenomodification of tRNA in archaea requires a bipartite rhodanese enzyme. FEBS Lett 586:717–721PubMedPubMedCentralCrossRefGoogle Scholar
  121. Susanti D, Mukhopadhyay B (2012) An intertwined evolutionary history of methanogenic archaea and sulfate reduction. PLoS One 7:e45313PubMedPubMedCentralCrossRefGoogle Scholar
  122. Sylvers LA, Rogers KC, Shimizu M, Ohtsuka E, Soll D (1993) A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 32:3836–3841PubMedCrossRefGoogle Scholar
  123. Tchong SI, Xu H, White RH (2005) L-cysteine desulfidase: an [4Fe-4S] enzyme isolated from Methanocaldococcus jannaschii that catalyzes the breakdown of L-cysteine into pyruvate, ammonia, and sulfide. Biochemistry 44:1659–1670PubMedCrossRefGoogle Scholar
  124. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology 144(Pt 9):2377–2406PubMedCrossRefGoogle Scholar
  125. Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5:316–323PubMedCrossRefGoogle Scholar
  126. Veerareddygari GR, Klusman TC, Mueller EG (2016) Characterization of the catalytic disulfide bond in E. coli 4-thiouridine synthetase to elucidate its functional quaternary structure. Protein Sci 25:1737–1743PubMedPubMedCentralCrossRefGoogle Scholar
  127. Walters EM, Garcia-Serres R, Naik SG, Bourquin F, Glauser DA, Schurmann P, Huynh BH, Johnson MK (2009) Role of histidine-86 in the catalytic mechanism of ferredoxin:thioredoxin reductase. Biochemistry 48:1016–1024PubMedCrossRefGoogle Scholar
  128. Westley J (1973) Rhodanese. Adv Enzymol Relat Areas Mol Biol 39:327–368PubMedGoogle Scholar
  129. White RH (2003) The biosynthesis of cysteine and homocysteine in Methanococcus jannaschii. Biochim Biophys Acta 1624:46–53PubMedCrossRefGoogle Scholar
  130. Xu XM, Carlson BA, Mix H, Zhang Y, Saira K, Glass RS, Berry MJ, Gladyshev VN, Hatfield DL (2007) Biosynthesis of selenocysteine on its tRNA in eukaryotes. PLoS Biol 5:e4PubMedCrossRefGoogle Scholar
  131. Yuan J, Palioura S, Salazar JC, Su D, O’Donoghue P, Hohn MJ, Cardoso AM, Whitman WB, Soll D (2006) RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc Natl Acad Sci U S A 103:18923–18927PubMedPubMedCentralCrossRefGoogle Scholar
  132. Yuan J, Hohn MJ, Sherrer RL, Palioura S, Su D, Soll D (2010) A tRNA-dependent cysteine biosynthesis enzyme recognizes the selenocysteine-specific tRNA in Escherichia coli. FEBS Lett 584:2857–2861PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zhang CM, Liu C, Slater S, Hou YM (2008) Aminoacylation of tRNA with phosphoserine for synthesis of cysteinyl-tRNA(Cys). Nat Struct Mol Biol 15:507–514PubMedCrossRefGoogle Scholar
  134. Zhang X, Eser BE, Chanani PK, Begley TP, Ealick SE (2016) Structural basis for iron-mediated sulfur transfer in archael and yeast thiazole synthases. Biochemistry 55:1826–1838PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • John J. Perona
    • 1
    • 2
    Email author
  • Benjamin Julius Rauch
    • 3
  • Camden M. Driggers
    • 1
  1. 1.Department of ChemistryPortland State UniversityPortlandUSA
  2. 2.Department of Biochemistry and Molecular BiologyOregon Health and Science UniversityPortlandUSA
  3. 3.Department of Microbiology and ImmunologyUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations