Advertisement

The Role of Phage in the Adaptation of Bacteria to New Environmental Niches

  • Veronica Casas
  • Stanley Maloy
Chapter
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB)

Abstract

Bacteria and their viruses (bacteriophages or phages) have a complex relationship that is in constant flux. Studies in natural environments, and by manipulations of phages and bacteria in a laboratory setting, have demonstrated that phages can profoundly influence bacterial populations. Phages can alter the density of different bacteria by lytic infection, and the genetic makeup of bacteria can be altered by lysogeny or transduction. Phages are promiscuous mediators of genetic exchange and often carry genes capable of altering the phenotypes of their bacterial hosts. The genetic traits acquired from phages can influence adaptation of bacteria to an environment by providing enhanced or novel metabolic properties, resistance to other phages or protozoan predators, and acquisition of antibiotic resistance or new virulence traits. The improvement in sequencing technology that sparked the microbial metagenomic revolution has provided another tool for understanding the impact of phages on bacterial populations. Metagenomic analysis of virus populations (“viromics”) has provided insight into the surprising extent that phages modulate the bacterial genome. While the benefit to the phages for transferring novel properties to its host is often poorly understood, this relationship clearly provides a selective advantage because these properties are maintained in many environments and including otherwise adverse conditions for the bacterial host. In this chapter, we will discuss how phages influence the fitness of bacteria in particular environmental niches.

References

  1. Al-Attar S, Westra ER, van der Oost J, Brouns SJJ (2011) Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol Chem 392:277–289PubMedCrossRefGoogle Scholar
  2. Allue-Guardia A, Garcia-Aljaro C, Muniesa M (2011) Bacteriophage-encoding cytolethal distending toxin type v gene induced from nonclinical Escherichia coli isolates. Infect Immun 79:3262–3272PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allue-Guardia A, Martinez-Castillo A, Muniesa M (2014) Persistence of infectious shiga toxin-encoding bacteriophages after disinfection treatments. Appl Environ Microbiol 80:2142–2149PubMedPubMedCentralCrossRefGoogle Scholar
  4. Altmann M, Wadl M, Altmann D, Benzler J, Eckmanns T, Krause G, Spode A, an der Heiden M (2011) Timeliness of surveillance during outbreak of shiga toxin-producing Escherichia coli infection, Germany, 2011. Emerg Infect Dis 17:1906–1909PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anantharaman A, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ (2014) Sulfur oxidation genes in diverse deep-sea viruses. Science 344(6185):757–760.  https://doi.org/10.1126/science.1252229 CrossRefPubMedGoogle Scholar
  6. Anderson RE, Sogin ML, Baross JA, Uversky VN (2014) Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics. PLoS One 9(10):e109696PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arnold JW, Koudelka GB (2014) The Trojan Horse of the microbiological arms race: phage-encoded toxins as a defence against eukaryotic predators. Environ Microbiol 16(2):454–466PubMedCrossRefGoogle Scholar
  8. Aziz RK, Edwards RA, Taylor WW, Low DE, McGeer A, Kotb M (2005) Mosaic prophages with horizontally acquired genes account for the emergence and diversification of the globally disseminated M1T1 clone of Streptococcus pyogenes. J Bacteriol 187(10):3311–3318PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bao YJ, Liang Z, Mayfield JA, Donahue DL, Carothers KE, Lee SW, Ploplis VA, Castellino FJ (2016) Genomic characterization of a pattern D Streptococcus pyogenes emm53 isolate reveals a genetic rationale for invasive skin tropicity. J Bacteriol 198:1712–1724PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barondess J, Beckwith J (1990) A bacterial virulence determinant encoded by lysogenic coliphage lambda. Nature 346:871–874PubMedCrossRefGoogle Scholar
  11. Baugher JL, Durmaz E, Klaenhammer TR (2014) Spontaneously induced prophages in Lactobacillus gasseri contribute to horizontal gene transfer. Appl Environ Microbiol 80(11):3508–3517.  https://doi.org/10.1128/aem.04092-13 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Benveniste R, Davies J (1973) Mechanisms of antibiotic resistance in bacteria. Annu Rev Biochem 42(1):471–506PubMedCrossRefPubMedCentralGoogle Scholar
  13. Betley M, Mekalanos J (1985) Staphylococcal enterotoxin A is encoded by phage. Science 229(4709):185–187PubMedCrossRefPubMedCentralGoogle Scholar
  14. Beutin L, Hammerl JA, Reetz J, Strauch E (2013) Shiga toxin-producing Escherichia coli strains from cattle as a source of the Stx2a bacteriophages present in enteroaggregative Escherichia coli O104:H4 strains. Int J Med Microbiol 303(8):595–602.  https://doi.org/10.1016/j.ijmm.2013.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bonanno L, Petit MA, Loukiadis E, Michel V, Auvraya F (2016) Heterogeneity in induction level, infection ability, and morphology of shiga toxin-encoding phages (stx phages) from dairy and human shiga toxin-producing Escherichia coli O26:H11 Isolates. Appl Environ Microbiol 82:2177–2186PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bondy-Denomy J, Davidson AR (2014) When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J Microbiol 52(3):235–242PubMedCrossRefGoogle Scholar
  17. Boyd EF (2012) Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. In: Lobocka M, Szybalski WT (eds) Advances in virus research: Bacteriophages, Pt A, vol 82. Elsevier Academic Press, San Diego, pp 91–118.  https://doi.org/10.1016/b978-0-12-394621-8.00014-5 CrossRefGoogle Scholar
  18. Boyd E, Waldor M (1999) Alternative mechanism of cholera toxin acquisition by Vibrio cholerae: generalized transduction of CTX phi by bacteriophage CP-T1. Infect Immun 67(11):5898–5905PubMedPubMedCentralGoogle Scholar
  19. Boyd EF, Waldor MK (2002) Evolutionary and functional analyses of variants of the toxin-coregulated pilus protein TcpA from toxigenic Vibrio cholerae nonO1/non-O139 serogroup isolates. Microbiology 148:1655–1666PubMedCrossRefPubMedCentralGoogle Scholar
  20. Boyd E, Heilpern A, Waldor M (2000a) Molecular analyses of a putative CTX phi precursor and evidence for independent acquisition of distinct CTX phi s by toxigenic Vibrio cholerae. J Bacteriol 182(19):5530–5538PubMedPubMedCentralCrossRefGoogle Scholar
  21. Boyd EF, Moyer KE, Shi L, Waldor MK (2000b) Infectious CTX Phi, and the Vibrio pathogenicity island prophage in Vibrio mimicus: evidence for recent horizontal transfer between V. mimicus and V. cholerae. Infect Immun 68:1507–1513PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brown CJ, Millstein J, Williams CJ, Wichman HA (2013) Selection affects genes involved in replication during long-term evolution in experimental populations of the bacteriophage φ. PLoS One 8(3):e60401.  https://doi.org/10.1371/journal.pone.0060401 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Broecker F, Klumpp J, Moelling K (2016) Long-term microbiota and virome in a Zurich patient after fecal transplantation against Clostridium difficile infection. In: Moelling K (ed) Nutrition and the microbiome, vol 1372, pp 29–41Google Scholar
  24. Brüssow H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68(3):560–602PubMedPubMedCentralCrossRefGoogle Scholar
  25. Buchholz U, Bernard H, Werber D, Bohmer MM, Remschmidt C, Wilking H, Delere Y, an der Heiden M, Adlhoch C, Dreesman J, Ehlers J, Ethelberg S, Faber M, Frank C, Fricke G, Greiner M, Hohle M, Ivarsson S, Jark U, Kirchner M, Koch J, Krause G, Luber P, Rosner B, Stark K, Kuhne M (2011) German outbreak of Escherichia coli O104:H4 associated with sprouts. N Engl J Med 365:1763–1770PubMedCrossRefGoogle Scholar
  26. Buckling A, Brockhurst M (2012) Bacteria–virus coevolution. In: Soyer O (ed) Evolutionary systems biology. Advances in experimental medicine and biology, vol 751. Springer, New YorkGoogle Scholar
  27. Buckling A, Hodgson DJ (2007) Short-term rates of parasite evolution predict the evolution of host diversity. J Evol Biol 20(5):1682–1688.  https://doi.org/10.1111/j.1420-9101.2007.01402.x CrossRefPubMedGoogle Scholar
  28. Buckling A, Rainey PB (2003) The role of parasites in sympatric and allopatric host diversification. Nature 421(6920):294–294.  https://doi.org/10.1038/nature01349 CrossRefGoogle Scholar
  29. Buckling A, Wei Y, Massey RC, Brockhurst MA, Hochberg ME (2006) Antagonistic coevolution with parasites increases the cost of host deleterious mutations. Proc R Soc B Biol Sci 273(1582):45–49CrossRefGoogle Scholar
  30. Burns N, James CE, Harrison E (2015) Polylysogeny magnifies competitiveness of a bacterial pathogen. Evol Appl 8(4):346–351PubMedPubMedCentralCrossRefGoogle Scholar
  31. Calderwood S, Auclair F, Donohue-RolfE A, Keusch G, Mekalanos J (1987) Nucleotide sequence of the shiga-like toxin genes of Escherichia coli. Proc Natl Acad Sci USA 84(13):4364–4368.  https://doi.org/10.1073/pnas.84.13.4364 CrossRefPubMedGoogle Scholar
  32. Calendar R (2006) The Bacteriophages, 2nd ed. Edited by Richard Calendar and Stephen T. Abedon. Oxford University Press, OxfordGoogle Scholar
  33. Calero-Caceres W, Muniesa M (2016) Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. Water Res 95:11–18.  https://doi.org/10.1016/j.watres.2016.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Campos J, Martinez E, Marrero K, Silva Y, Rodriguez BL, Suzarte E, Ledon T, Fando R (2003) Novel type of specialized transduction for CTXÂ or its satellite phage RS1 mediated by filamentous phage VGJÂ in Vibrio cholerae. J Bacteriol 185(24):7231–7240PubMedPubMedCentralCrossRefGoogle Scholar
  35. Casas V, Maloy SR (2011) Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens. Future Microbiol 6(12):1461–1473PubMedCrossRefPubMedCentralGoogle Scholar
  36. Casas V, Miyake J, Balsley H, Roark J, Telles S, Leeds S, Zurita I, Breitbart M, Bartlett D, Azam F, Rohwer F (2006) Widespread occurrence of phage-encoded exotoxin genes in terrestrial and aquatic environments in Southern California. FEMS Microbiol Lett 261(1):141–149.  https://doi.org/10.1111/j.1574-6968.2006.00345.x CrossRefPubMedPubMedCentralGoogle Scholar
  37. Casas V, Magbanua J, Sobrepeña G, Kelley ST, Maloy SR (2010) Reservoir of bacterial exotoxin genes in the environment. Int J Microbiol 2010:754368.  https://doi.org/10.1155/2010/754368 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Casas V, Sobrepena G, Rodriguez-Mueller B, AhTye J, Maloy SR (2011) Bacteriophage-encoded shiga toxin gene in atypical bacterial host. Gut Pathogens 3:7CrossRefGoogle Scholar
  39. Casjens SR, Thuman-Commike PA (2011) Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 411(2):393–415PubMedCrossRefPubMedCentralGoogle Scholar
  40. Chambers L, Yang Y, Littier H, Ray P, Zhang T, Pruden A, Strickland M, Katharine K, Mark Ibekwe A (2015) Metagenomic analysis of antibiotic resistance genes in dairy cow feces following therapeutic administration of third generation cephalosporin. PLoS One 10(8):e0133764PubMedPubMedCentralCrossRefGoogle Scholar
  41. Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin YF, Yannarell AC, Maxwell S, Aminov RI (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 38(3):1086–1108.  https://doi.org/10.2134/jeq2008.0128 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Chiura HX (1997) Generalized gene transfer by virus-like particles from marine bacteria. Aquat Microb Ecol 13(1):75–83.  https://doi.org/10.3354/ame013075 CrossRefGoogle Scholar
  43. Chouikha I, Charrier L, Filali S, Derbise A, Carniel E (2010) Insights into the infective properties of YpfΦ, the Yersinia pestis filamentous phage. Virology 407(1):43–52PubMedCrossRefPubMedCentralGoogle Scholar
  44. Choi S, Dunams D, Jiang SC (2010) Transfer of cholera toxin genes from O1 to non-O1/O139 strains by vibriophages from California coastal waters. J Appl Microbiol 108:1015–1022PubMedCrossRefPubMedCentralGoogle Scholar
  45. Ciofu O, Hansen CR, Høiby N (2013) Respiratory bacterial infections in cystic fibrosis. Curr Opin Pulm Med 19(3):251–258PubMedCrossRefPubMedCentralGoogle Scholar
  46. Cleary PP, LaPenta D, Vessela R, Lam H, Cue D (1998) A globally disseminated M1 subclone of Group A Streptococci differs from other subclones by 70 kilobases of prophage DNA and capacity for high-frequency intracellular invasion. Infect Immun 66:5592–5597PubMedPubMedCentralGoogle Scholar
  47. Cohen SN, Miller CA (1970) Non-chromosomal antibiotic resistance in bacteria II: molecular nature of R-factors isolated from Proteus mirabilis and Escherichia coli. J Mol Biol 50:671–687PubMedCrossRefPubMedCentralGoogle Scholar
  48. Cohen SN, Chang ACY, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69(8):2110–2114PubMedPubMedCentralCrossRefGoogle Scholar
  49. Coleman D, Sullivan D, Russell R, Arbuthnott J, Carey B, Pomeroy H (1989) Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of .beta.-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. J Gen Microbiol 135:1679–1698PubMedPubMedCentralGoogle Scholar
  50. Colombo S, Arioli S, Guglielmetti S, Lunelli F, Mora D (2016) Virome-associated antibiotic-resistance genes in an experimental aquaculture facility. FEMS Microbiol Ecol 92(3).  https://doi.org/10.1093/femsec/fiw003 PubMedCrossRefPubMedCentralGoogle Scholar
  51. Colomer-Lluch M, Imamovic L, Jofre J, Muniesa M (2011a) Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry. Antimicrob Agents Chemother 55(10):4908–4911PubMedPubMedCentralCrossRefGoogle Scholar
  52. Colomer-Lluch M, Jofre J, Muniesa M, Aziz R (2011b) Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS One 6(3):e17549PubMedPubMedCentralCrossRefGoogle Scholar
  53. Colomer-Lluch M, Jofre J, Muniesa M (2014) Quinolone resistance genes (qnrA and qnrS) in bacteriophage particles from wastewater samples and the effect of inducing agents on packaged antibiotic resistance genes. J Antimicrob Chemother 69(5):1265–1274.  https://doi.org/10.1093/jac/dkt528 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Cornick NA, Helgerson AF, Mai V, Ritchie JM, Acheson DWK (2006) In vivo transduction of an Stx-encoding phage in ruminants. Appl Environ Microbiol 72(7):5086–5088.  https://doi.org/10.1128/aem.00157-06 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Costerton JW, Lam J, Lam K, Chan R (1983) The role of the microcolony mode of growth in the pathogenesis of Pseudomonas aeruginosa infections. Rev Infect Dis 5:s867–S873PubMedCrossRefPubMedCentralGoogle Scholar
  56. Dammeyer T, Bagby S, Sullivan M, Chisholm S, Frankenberg-Dinkel N (2008) Efficient phage mediated pigment biosynthesis in oceanic cyanobacteria. Curr Biol 18(6):442–448PubMedCrossRefPubMedCentralGoogle Scholar
  57. Das B, Pazhani GP, Sarkar A, Mukhopadhyay AK, Nair GB, Ramamurthy T (2016) Molecular evolution and functional divergence of Vibrio cholerae. Curr Opin Infect Dis 29:520–527PubMedCrossRefPubMedCentralGoogle Scholar
  58. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433PubMedPubMedCentralCrossRefGoogle Scholar
  59. Davis BM, Waldor MK (2003) Filamentous phages linked to virulence of Vibrio cholerae. Curr Opin Microbiol 6:35–42PubMedCrossRefPubMedCentralGoogle Scholar
  60. Davis BM, Moyer KE, Boyd EF, Waldor MK (2000) CTX prophages in classical biotype Vibrio cholerae: Functional phage genes but dysfunctional phage genomes. J Bacteriol 182:6992–6998PubMedPubMedCentralCrossRefGoogle Scholar
  61. Derbise A (2014) Ypf Phi: a filamentous phage acquired by Yersinia pestis. Front Microbiol 5:701PubMedPubMedCentralCrossRefGoogle Scholar
  62. Diard M, Bakkeren E, Cornuault JK, Moor K, Hausmann A, Sellin ME, Loverdo C, Aertsen A, Ackermann M, De Paepe M, Slack E, Hardt WD (2017) Inflammation boosts bacteriophage transfer between Salmonella spp. Science 355:1211–1215PubMedCrossRefPubMedCentralGoogle Scholar
  63. Dumke R, Schroter-Bobsin U, Jacobs E, Roske I (2006) Detection of phages carrying the Shiga toxin 1 and 2 genes in waste water and river water samples. Lett Appl Microbiol 42:48–53PubMedCrossRefGoogle Scholar
  64. Dutilh BE, Thompson CC, Vicente ACP, Marin MA, Lee C, Silva GGZ, Schmieder R, Andrade BGN, Chimetto L, Cuevas D, Garza DR, Okeke IN, Aboderin AO, Spangler J, Ross T, Dinsdale EA, Thompson FL, Harkins TT, Edwards RA (2014) Comparative genomics of 274 Vibrio cholerae genomes reveals mobile functions structuring three niche dimensions. BMC Genomics 15:11CrossRefGoogle Scholar
  65. Eklund M, Poysky F (1974) Interconversion of type C and D strains of Clostridium botulinum by specific bacteriophages. Appl Environ Microbiol 27:251–258Google Scholar
  66. Ernst RK, D’Argenio DA, Ichikawa JK, Bangera MG, Selgrade S, Burns JL, Hiatt P, McCoy K, Brittnacher M, Kas A, Spencer DH, Olson MV, Ramsey BW, Lory S, Miller SI (2003) Genome mosaicism is conserved but not unique in Pseudomonas aeruginosa isolates from the airways of young children with cystic fibrosis. Environ Microbiol 5(12):1341–1349PubMedCrossRefPubMedCentralGoogle Scholar
  67. Fan X, Li Y, He R, Li Q, He W (2016) Comparative analysis of prophage-like elements in Helicobacter sp genomes. PeerJ 4:e2012PubMedPubMedCentralCrossRefGoogle Scholar
  68. Fancello L, Desnues C, Raoult D, Rolain JM (2011) Bacteriophages and diffusion of genes encoding antimicrobial resistance in cystic fibrosis sputum microbiota. J Antimicrob Chemother 66(11):2448–2454PubMedCrossRefGoogle Scholar
  69. Faruque SM, Asadulghani, Rahman MM, Waldor MK, Sack DA (2000) Sunlight-induced propagation of the lysogenic phage encoding cholera toxin. Infect Immun 68(8):4795–4801.  https://doi.org/10.1128/iai.68.8.4795-4801.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Fernandez-Gonzalez E, Backert S (2014) DNA transfer in the gastric pathogen Helicobacter pylori. J Gastroenterol 49:594–604PubMedCrossRefGoogle Scholar
  71. Fineran PC, Gerritzen MJH, Suarez-Diez M, Kunne T, Boekhorst J, van Hijum S, Staals RHJ, Brouns SJJ (2014) Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci USA 111:e1629–E1638PubMedCrossRefGoogle Scholar
  72. Focazio MJ, Kolpin DW, Barnes KK, Furlong ET, Meyer MT, Zaugg SD, Barber LB, Thurman ME (2008) A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States II: Untreated drinking water sources. Sci Total Environ 402(2–3):201–216.  https://doi.org/10.1016/j.scitotenv.2008.02.021 CrossRefPubMedGoogle Scholar
  73. Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M, Bernard H, Fruth A, Prager R, Spode A, Wadl M, Zoufaly A, Jordan S, Kemper MJ, Follin P, Muller L, King LA, Rosner B, Buchholz U, Stark K, Krause G, Team HUSI (2011) Epidemic profile of shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med 365:1771–1780PubMedCrossRefGoogle Scholar
  74. Freeman VJ (1951) Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacteriol 61(6):675–688PubMedPubMedCentralGoogle Scholar
  75. Freer JH, Arbuthnott JP (1982) Toxins of Staphylococcus aureus. Pharmacol Ther 19:55–106PubMedCrossRefGoogle Scholar
  76. Fruth A, Prager R, Tietze E, Rabsch W, Flieger A (2015) Molecular epidemiological view on Shiga toxin-producing Escherichia coli causing human disease in Germany: diversity, prevalence, and outbreaks. Int J Med Microbiol 305(7):697–704.  https://doi.org/10.1016/j.ijmm.2015.08.020 CrossRefPubMedGoogle Scholar
  77. Gamage SD, Patton AK, Hanson JF, Weiss AA (2004) Diversity and host range of Shiga toxin-encoding phage. Infect Immun 72(12):7131–7139PubMedPubMedCentralCrossRefGoogle Scholar
  78. Garcia-Aljaro C, Muniesa M, Jofre J, Blanch AR (2006) Newly identified bacteriophages carrying the stx Shiga toxin gene isolated from Escherichia coli strains in polluted waters. FEMS Microbiol Lett 258:127–135PubMedCrossRefGoogle Scholar
  79. Garcia-Aljaro C, Muniesa M, Jofre J, Blanch AR (2009) Genotypic and phenotypic diversity among induced, stx(2)-carrying bacteriophages from environmental Escherichia coli strains. Appl Environ Microbiol 75:329–336PubMedCrossRefGoogle Scholar
  80. Goerke C, Wolz C (2010) Adaptation of Staphylococcus aureus to the cystic fibrosis lung. Int J Med Microbiol 300(8):520–525.  https://doi.org/10.1016/j.ijmm.2010.08.003 CrossRefPubMedGoogle Scholar
  81. Goh S, Hussain H, Chang BJ, Emmett W, Riley TV, Mullany P (2013) Phage phi C2 mediates transduction of Tn6215, encoding erythromycin resistance, between Clostridium difficile strains. MBio 4(6):e00840-13.  https://doi.org/10.1128/mBio.00840-13 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Goldhill DH, Turner PE (2014) The evolution of life history trade-offs in viruses. Curr Opin Virol 8:79–84PubMedCrossRefPubMedCentralGoogle Scholar
  83. Gomez P, Bennie J, Gaston KJ, Buckling A (2015) The impact of resource availability on bacterial resistance to phages in soil. PLoS One 10(4):e0123752.  https://doi.org/10.1371/journal.pone.0123752 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Gomez P, Buckling A (2011) Bacteria-phage antagonistic coevolution in soil. Science 332(6025):106–109PubMedCrossRefGoogle Scholar
  85. Gorter FA, Scanlan PD, Buckling A (2016) Adaptation to abiotic conditions drives local adaptation in bacteria and viruses coevolving in heterogeneous environments. Biol Lett 12(2):20150879PubMedPubMedCentralCrossRefGoogle Scholar
  86. Govan JRW, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574PubMedPubMedCentralGoogle Scholar
  87. Govind R, Fralick JA, Rolfe RD (2011) In vivo lysogenization of a Clostridium difficile bacteriophage Phi CD119. Anaerobe 17(3):125–129PubMedCentralCrossRefPubMedGoogle Scholar
  88. Groman N (1953) The relation of bacteriophage to the change of Corynebacterium diphtheriae from avirulence to virulence. Science 117:297–299PubMedCrossRefGoogle Scholar
  89. Guinane CM, Kent RM, Norberg S, Hill C, Fitzgerald GF, Stanton C, Ross RP (2011) Host specific diversity in Lactobacillus johnsonii as evidenced by a major chromosomal inversion and phage resistance mechanisms. PLoS One 6(4):e18740PubMedPubMedCentralCrossRefGoogle Scholar
  90. Guy L, Nystedt B, Toft C, Zaremba-Niedzwiedzka K, Berglund EC, Granberg F, Naslund K, Eriksson AS, Andersson SGE (2013) A gene transfer agent and a dynamic repertoire of secretion systems hold the keys to the explosive radiation of the emerging pathogen Bartonella. PLoS Genet 9:22CrossRefGoogle Scholar
  91. Haaber J, Leisner JJ, Cohn MT, Catalan-Moreno A, Nielsen JB, Westh H, Penadés JR, Ingmer H (2016) Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat Commun 7:13333PubMedPubMedCentralCrossRefGoogle Scholar
  92. Hall AR, Scanlan PD, Morgan AD, Buckling A (2011) Host-parasite coevolutionary arms races give way to fluctuating selection. Ecol Lett 14(7):635–642PubMedCrossRefPubMedCentralGoogle Scholar
  93. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108.  https://doi.org/10.1038/nrmicro821 CrossRefPubMedGoogle Scholar
  94. Hammerl JA, Al Dahouk S, Nöckler K, Göllner C, Appel B, Hertwig S (2014) F1 and Tbilisi are closely related Brucellaphages exhibiting some distinct nucleotide variations which determine the host specificity. Genome Announc 2(1):e01250-01213CrossRefGoogle Scholar
  95. Hammerl JA, Göllner C, AlDahouk S, Nöckler K, Reetz J, Hertwig S (2016) Analysis of the first temperate broad host range Brucellaphage (BiPBO1) isolated from B. inopinata. Front Microbiol 7:24.  https://doi.org/10.3389/fmicb.2016.00024 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Hannigan GD, Meisel JS, Tyldsley AS, Zheng Q, Hodkinson BP, SanMiguel AJ, Minot S, Bushman FD, Grice EA (2015) The Human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. mBio 6(5):e01578-15.  https://doi.org/10.1128/mBio.01578-15 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Haramoto E, Katayama H, Oguma K, Yamashita H, Tajima A, Nakajima H, Ohgaki S (2006) Seasonal profiles of human Noroviruses and indicator bacteria in a wastewater treatment plant in Tokyo, Japan. Water Sci Technol 54:301–308PubMedCrossRefGoogle Scholar
  98. Hawkey PM, Jones AM (2009) The changing epidemiology of resistance. J Antimicrob Chemother 64(Supplement 1):i3–i10PubMedCrossRefGoogle Scholar
  99. Hazen TH, Pan L, Gu JD, Sobecky PA (2010) The contribution of mobile genetic elements to the evolution and ecology of Vibrios. FEMS Microbiol Ecol 74:485–499PubMedCrossRefGoogle Scholar
  100. Helbin WM, Polakowska K, Miedzobrodzki J (2012) Phage-related virulence factors of Staphylococcus aureus. Postepy Mikrobiologii 51:291–298Google Scholar
  101. Heler R, Marraffini LA, Bikard D (2014) Adapting to new threats: the generation of memory by CRISPR-Cas immune systems. Mol Microbiol 93:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  102. Horne MT (1970) Coevolution of Escherichia coli and bacteriophages in chemostat culture. Science 168:992–993PubMedCrossRefGoogle Scholar
  103. Horvath P, Barrangou R (2011) Protection against foreign DNA. In: Storz G, Hengge R (eds) Bacterial stress responses, 2nd edn. ASM Press, Washington, DC, pp 333–348CrossRefGoogle Scholar
  104. Huang S, Zhang S, Jiao N, Chen F (2015) Comparative genomic and phylogenomic analyses reveal a conserved core genome shared by estuarine and oceanic cyanopodoviruses. PLoS One 10(11):e0142962.  https://doi.org/10.1371/journal.pone.0142962 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Hurwitz BL, Brum JR, Sullivan MB (2015) Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean virome. ISME J 9:472–484PubMedCrossRefGoogle Scholar
  106. Hynes AP, Villion M, Moineau S (2014) Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages. Nat Commun 5:4399.  https://doi.org/10.1038/ncomms5399 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Inoue K, Iida H (1970) Conversion of toxigenicity in Clostridium botulinum type C. Jpn J Microbiol 14(1):87–89PubMedCrossRefGoogle Scholar
  108. Ivanov YV, Shariat N, Register KB, Linz B, Rivera I, Hu K, Dudley EG, Harvill ET (2015) A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease. BMC Genomics 16:863.  https://doi.org/10.1186/s12864-015-2028-9 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Jacob AE, Hobbs SJ (1974) Conjugal transfer of plasmid-borne multiple antibiotic-resistance in Streptococcus-faecalis var zymogenes. J Bacteriol 117:360–372PubMedPubMedCentralGoogle Scholar
  110. Jiang SC, Paul JH (1996) Occurrence of lysogenic bacteria in marine microbial communities as determined by prophage induction. Mar Ecol Prog Ser 142(1–3):27–38CrossRefGoogle Scholar
  111. Jiang SC, Paul JH (1998) Gene transfer by transduction in the marine environment. Appl Environ Microbiol 64(8):2780–2787PubMedPubMedCentralGoogle Scholar
  112. Jjemba PK (2002a) The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land: a review. Agric Ecosyst Environ 93(1–3):267–278.  https://doi.org/10.1016/s0167-8809(01)00350-4 CrossRefGoogle Scholar
  113. Jjemba PK (2002b) The effect of chloroquine, quinacrine, and metronidazole on both soybean plants and soil microbiota. Chemosphere 46(7):1019–1025PubMedCrossRefGoogle Scholar
  114. Johnson L, Schlievert P (1984) Group A streptococcal phage T12 carries the structural gene for pyrogenic exotoxin type A. Mol Gen Genet 194(1–2):52–56PubMedCrossRefPubMedCentralGoogle Scholar
  115. Kashiwagi A, Yomo T, Casadesús J (2011) Ongoing phenotypic and genomic changes in experimental coevolution of RNA bacteriophage QÎ2 and Escherichia coli. PLoS Genet 7(8):e1002188PubMedPubMedCentralCrossRefGoogle Scholar
  116. Karmali MA (2017) Emerging public health challenges of shiga toxin-producing Escherichia coli related to changes in the pathogen, the population, and the environment. Clin Infect Dis 64(3):371–376.  https://doi.org/10.1093/cid/ciw708 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Karpe YA, Kanade GD, Pingale KD, Arankalle VA, Banerjee K (2016) Genomic characterization of Salmonella bacteriophages isolated from India. Virus Genes 52(1):117–126PubMedCrossRefPubMedCentralGoogle Scholar
  118. Karataev GI, Moskivina IL, Ryabinina OP, Miller GG, Mebel SM, Lapaeva IA (1988) Isolation and characterization of bacteriophage from the vaccine strain Tohama Phase I. Mol Genet Microbiol Virol 4:22–25Google Scholar
  119. Kay P, Blackwell PA, Boxall ABA (2004) Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environ Toxicol Chem 23(5):1136–1144.  https://doi.org/10.1897/03-374 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Kelly WJ, Altermann E, Lambie SC, Leahy SC (2013) Interaction between the genomes of Lactococcus lactis and phages of the P335 species. Front Microbiol 4:257PubMedPubMedCentralCrossRefGoogle Scholar
  121. Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8(1):1–13.  https://doi.org/10.1016/j.ecolind.2007.06.002 CrossRefGoogle Scholar
  122. Kim MS, Bae JW (2016) Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice. Environ Microbiol 18:1498–1510PubMedCrossRefGoogle Scholar
  123. Kim EJ, Lee CH, Nair GB, Kim DW (2015) Whole-genome sequence comparisons reveal the evolution of Vibrio cholerae O1. Trends Microbiol 23:479–489PubMedCrossRefPubMedCentralGoogle Scholar
  124. Koonin EV, Makarova KS, Wolf YI (2017) Evolutionary genomics of defense systems in archaea and bacteria. Annu Rev Microbiol 71(1):233–261PubMedPubMedCentralCrossRefGoogle Scholar
  125. Koskella B (2013) Phage-mediated selection on microbiota of a long-lived host. Curr Biol 23:1256–1260PubMedCrossRefPubMedCentralGoogle Scholar
  126. Koskella B, Meaden S (2013) Understanding bacteriophage specificity in natural microbial communities. Viruses 5(3):806–823. PMC. Web. 20 July 2018PubMedPubMedCentralCrossRefGoogle Scholar
  127. Koskella B, Lin DM, Buckling A, Thompson JN (2012) The costs of evolving resistance in heterogeneous parasite environments. Proc R Soc B Biol Sci 279(1735):1896–1903CrossRefGoogle Scholar
  128. Krahn T, Wibberg D, Maus I, Winkler A, Bontron S, Sczyrba A, Nordmann P, Puehler A, Poirel L, Schlueter A (2016) Intraspecies transfer of the chromosomal Acinetobacter baumannii bla(NDM-1) carbapenemase gene. Antimicrob Agents Chemother 60(5):3032–3040PubMedPubMedCentralCrossRefGoogle Scholar
  129. Kraushaar B, Hammerl JA, Kienol M, Heinig ML, Sperling N, Thanh MD, Reetz J, Jakel C, Fetsch A, Hertwig S (2017) Acquisition of virulence factors in livestock-associated MRSA: lysogenic conversion of CC398 strains by virulence gene-containing phages. Sci Rep 7.  https://doi.org/10.1038/s41598-017-02175-4
  130. L’Abee-Lund TM, Jorgensen HJ, O’Sullivan K, Bohlin J, Ligard G, Granum PE, Lindback T (2012) The highly virulent 2006 Norwegian EHEC O103:H25 outbreak strain is related to the 2011 German O104:H4 outbreak strain. PLoS One 7(3):e31413.  https://doi.org/10.1371/journal.pone.0031413 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Lachmayr KL, Kerkhof LJ, DiRienzo AG, Cavanaugh CM, Ford TE (2009) Quantifying nonspecific TEM beta-lactamase (bla(TEM)) genes in a wastewater stream. Appl Environ Microbiol 75:203–211PubMedCrossRefPubMedCentralGoogle Scholar
  132. Lainhart W, Stolfa G, Koudelka G (2009) Shiga toxin as a bacterial defense against a eukaryotic predator, Tetrahymena thermophila. J Bacteriol 191(16):5116–5122PubMedPubMedCentralCrossRefGoogle Scholar
  133. Lam J, Chan R, Lam K, Costerton JW (1980) Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28(2):546–556PubMedPubMedCentralGoogle Scholar
  134. Lan S-F, Huang C-H, Chang C-H, Liao W-C, Lin I-H (2009) Characterization of a new plasmid-like prophage in a pandemic. Appl Environ Microbiol 75(9):2659–2667PubMedPubMedCentralCrossRefGoogle Scholar
  135. Lapaeva IA, Mebel SM, Pereverzev NA, Sinyashina LN (1980) Bordetella pertussis bacteriophage. Zh Mikrobiol Epidemiol Immunobiol 5:85–90Google Scholar
  136. Latino L, Essoh C, Blouin Y, Thien HV, Pourcel C (2014) A novel Pseudomonas aeruginosa bacteriophage, Ab31, a chimera formed from temperate phage PAJU2 and P. putida lytic phage AF: characteristics and mechanism of bacterial resistance. PLoS One 9(4):e93777.  https://doi.org/10.1371/journal.pone.0093777 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Levin BR, Guttman DS (2010) Nasty viruses, costly plasmids, population dynamics, and the conditions for establishing and maintaining CRISPR-mediated adaptive immunity in bacteria. PLoS Genet 6(10):e1001171PubMedPubMedCentralCrossRefGoogle Scholar
  138. Lee YD, Park JH (2016) Phage conversion for beta-lactam antibiotic resistance of Staphylococcus aureus from foods. J Microbiol Biotechnol 26(2):263–269PubMedCrossRefGoogle Scholar
  139. Lee JY, Li ZQ, Miller ES (2017) Vibrio phage KVP40 encodes a functional NAD+ salvage pathway. J Bacteriol 199(9):e00855-16.  https://doi.org/10.1128/JB.00855-16 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Lemieux A-A, Jeukens J, Kukavica-Ibrulj I, Fothergill JL, Boyle B, Laroche J, Tucker NP, Winstanley C, Levesque RC (2016) Genes required for free phage production are essential for Pseudomonas aeruginosa chronic lung infections. J Infect Dis 213(3):395–402PubMedCrossRefGoogle Scholar
  141. Lenski RE (1988) Dynamics of interactions between bacteria and virulent bacteriophage. Adv Microb Ecol 10:1–44Google Scholar
  142. Lenski RE, Levin BR (1985) Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am Nat 125(4):585–602CrossRefGoogle Scholar
  143. Lindsay J, Ruzin A, Ross H, Kurepina N, Novick R (1998) The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 29(2):527–543PubMedCrossRefPubMedCentralGoogle Scholar
  144. Looft T, Allen HK, Cantarel BL, Levine UY, Bayles DO, Alt DP, Henrissat B, Stanton TB (2014) Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. ISME J 8(8):1566–1576.  https://doi.org/10.1038/ismej.2014.12 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Los JM, Los M, Wegrzyn A, Wegrzyn G (2013) Altruism of shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results. Front Cell Infect Microbiol 3:166.  https://doi.org/10.3389/fcimb.2012.00166 CrossRefGoogle Scholar
  146. Lupo A, Coyne S, Berendonk TU (2012) Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. Front Microbiol 3:13CrossRefGoogle Scholar
  147. Mai-Prochnow A, Hui JGK, Kjelleberg S, Rakonjac J, McDougald D, Rice SA (2015) Big things in small packages: the genetics of filamentous phage and effects on fitness of their host. FEMS Microbiol Rev 39(4):465–487.  https://doi.org/10.1093/femsre/fuu007 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Maloy SR, Stewart VJ, Taylor RK (1996) Genetic analysis of pathogenic bacteria: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  149. Marti R, Muniesa M, Schmid M, Ahrens CH, Naskova J, Hummerjohann J (2016) Short communication: heat-resistant Escherichia coli as potential persistent reservoir of extended-spectrum beta-lactamases and Shiga toxin-encoding phages in dairy. J Dairy Sci 99(11):8622–8632.  https://doi.org/10.3168/jds.2016-11076 CrossRefPubMedPubMedCentralGoogle Scholar
  150. McGavin MJ, Arsic B, Nickerson NN (2012) Evolutionary blueprint for host- and niche-adaptation in Staphylococcus aureus clonal complex CC30. Front Cell Infect Microbiol 2:48.  https://doi.org/10.3389/fcimb.2012.00048 CrossRefPubMedPubMedCentralGoogle Scholar
  151. McGee LW, Aitchison EW, Brian Caudle S, Morrison AJ, Zheng L, Yang W, Rokyta DR, Worobeg M (2014) Payoffs, not tradeoffs, in the adaptation of a virus to ostensibly conflicting selective pressures. PLoS Genet 10(10):e1004611PubMedPubMedCentralCrossRefGoogle Scholar
  152. McLaughlin MR, Rose JB (2006) Application of Bacteroides fragilis phage as an alternative indicator of sewage pollution in Tampa Bay, Florida. Estuar Coasts 29(2):246–256CrossRefGoogle Scholar
  153. Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, Lenski RE (2012) Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335:428–432PubMedPubMedCentralCrossRefGoogle Scholar
  154. Miao XS, Bishay F, Chen M, Metcalfe CD (2004) Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ Sci Technol 38(13):3533–3541.  https://doi.org/10.1021/es030653q CrossRefPubMedPubMedCentralGoogle Scholar
  155. Michel-Briand Y, Baysse C (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84(5–6):499–510PubMedCrossRefPubMedCentralGoogle Scholar
  156. Morris P, Marinelli LJ, Jacobs-Sera D, Hendrix RW, Hatfull GF (2008) Genomic characterization of mycobacteriophage giles: evidence for phage acquisition of host DNA by illegitimate recombination. J Bacteriol 190(6):2172–2182PubMedPubMedCentralCrossRefGoogle Scholar
  157. Moce-Llivina L, Muniesa M, Pimenta-Vale H, Lucena F, Jofre J (2003) Survival of bacterial indicator species and bacteriophages after thermal treatment of sludge and sewage. Appl Environ Microbiol 69:1452–1456PubMedPubMedCentralCrossRefGoogle Scholar
  158. Modi SR, Lee HH, Spina CS, Collins JJ (2013) Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499:219–222PubMedPubMedCentralCrossRefGoogle Scholar
  159. Mookerjee S, Batabyal P, Sarkar M, Palit A (2015) Seasonal prevalence of enteropathogenic Vibrio and their phages in the riverine estuarine ecosystem of South Bengal. PLoS One 10(9):13CrossRefGoogle Scholar
  160. Moon BY, Park JY, Hwang SY, Robinson DA, Thomas JC, Fitzgerald JR, Park YH, Seo KS (2015) Phage-mediated horizontal transfer of a Staphylococcus aureus virulence-associated genomic island. Sci Rep 5(1):9784.  https://doi.org/10.1038/srep09784 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Mora A, Herrera A, Lopez C, Dahbi G, Mamani R, Pita JM, Alonso MP, Llovo J, Bernardez MI, Blanco JE, Blanco M, Blanco J (2011) Characteristics of the Shiga-toxin-producing enteroaggregative Escherichia coli O104:H4 German outbreak strain and of STEC strains isolated in Spain. Int Microbiol 14:121–141PubMedGoogle Scholar
  162. Morgan AD, Bonsall MB, Buckling A (2010) Impact of bacterial mutation rate on coevolutionary dynamics between bacteria and phages. Evolution 64(10):2980–2987.  https://doi.org/10.1111/j.1558-5646.2010.01037.x CrossRefPubMedGoogle Scholar
  163. Motlagh AM, Bhattacharjee AS, Coutinho FH, Dutilh BE, Casjens SR, Goel RK (2017) Insights of phage-host interaction in hypersaline ecosystem through metagenomics analyses. Front Microbiol 8:15CrossRefGoogle Scholar
  164. Muniesa M, Jofre J (2004) Abundance in sewage of bacteriophages infecting Escherichia coli O157:H7. Public Health Microbiol Methods Protocols 268:79–88CrossRefGoogle Scholar
  165. Muniesa M, Serra-Moreno R, Jofre J (2004) Free Shiga toxin bacteriophages isolated from sewage showed diversity although the stx genes appeared conserved. Environ Microbiol 6:716–725PubMedCrossRefGoogle Scholar
  166. Murugaiyan S, Bae JY, Wu J, Lee SD, Um HY, Choi HK, Chung E, Lee JH, Lee SW (2011) Characterization of filamentous bacteriophage PE226 infecting Ralstonia solanacearum strains. J Appl Microbiol 110:296–303PubMedCrossRefGoogle Scholar
  167. Nasu H, Iida T, Sugahara T, Yamaichi Y, Park K, Yokoyama K, Makino K, Shinagawa H, Honda T (2000) A filamentous phage associated with recent pandemic Vibrio parahaemolyticus O3:K6 strains. J Clin Microbiol 38(6):2156–2161PubMedPubMedCentralGoogle Scholar
  168. Nedialkova LP, Sidstedt M, Koeppel MB, Spriewald S, Ring D, Gerlach RG, Bossi L, Stecher B (2016) Temperate phages promote colicin-dependent fitness of serovar Typhimurium. Environ Microbiol 18(5):1591–1603PubMedCrossRefPubMedCentralGoogle Scholar
  169. Novick RP, Christie GE, Penades JR (2010) The phage-related chromosomal islands of Gram-positive bacteria. Nat Rev Microbiol 8:541–551PubMedPubMedCentralCrossRefGoogle Scholar
  170. Nyambe S, Burgess C, Whyte P, Bolton D (2016a) Survival studies of a temperate and lytic bacteriophage in bovine faeces and slurry. J Appl Microbiol 121(4):1144–1151PubMedCrossRefPubMedCentralGoogle Scholar
  171. Nyambe S, Burgess C, Whyte P, Bolton D (2016b) The survival of a temperate vtx bacteriophage and an anti-verocytotoxigenic O157 lytic phage in water and soil samples. Zoonoses Public Health 63(8):632–640PubMedCrossRefGoogle Scholar
  172. Obeng N, Pratama AA, van Elsas JD (2016) The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol 24(6):440–449PubMedCrossRefPubMedCentralGoogle Scholar
  173. O’Brien AD, Newland JW, Miller SF, Holmes RK, Smith HW, Formal SB (1984) Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226(4675):694–696PubMedCrossRefPubMedCentralGoogle Scholar
  174. O’Brien S, Rodrigues AMM, Buckling A (2013) The evolution of bacterial mutation rates under simultaneous selection by interspecific and social parasitism. Proc R Soc B Biol Sci 280(1773):20131913PubMedCrossRefPubMedCentralGoogle Scholar
  175. Okuda J, Ishibashi M, Hayakawa E, Nishino T (1997) Emergence of a Unique O3:K6 Clone of Vibrio parahaemolyticus. J Clin Microbiol 35(12):3150–3155PubMedPubMedCentralGoogle Scholar
  176. O’Shea YA, Fidelma Boyd E (2002) Mobilization of the pathogenicity island between isolates mediated by CP-T1 generalized transduction. FEMS Microbiol Lett 214(2):153–157PubMedCrossRefPubMedCentralGoogle Scholar
  177. Pal C, Macia MD, Oliver A, Schachar I, Buckling A (2007) Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450(7172):1079–1081.  https://doi.org/10.1038/nature06350 CrossRefPubMedGoogle Scholar
  178. Park MO, Ikenaga H, Watanabe K (2007) Phage diversity in a methanogenic digester. Microb Ecol 53:98–103PubMedCrossRefGoogle Scholar
  179. Park D, Stanton E, Ciezki K, Parrell D, Bozile M, Pike D, Forst SA, Jeong KC, Ivanek R, Dopfer D, Kaspar CW (2013) Evolution of the stx2-encoding prophage in persistent bovine Escherichia coli O157:H7 strains. Appl Environ Microbiol 79:1563–1572PubMedPubMedCentralCrossRefGoogle Scholar
  180. Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, Thomson NR, Quail M, Smith F, Walker D, Libberton B, Fenton A, Hall N, Brockhurst MA (2010) Antagonistic coevolution accelerates molecular evolution. Nature 464(7286):275–278PubMedPubMedCentralCrossRefGoogle Scholar
  181. Paton A, Paton J (1996) Enterobacter cloacae producing a shiga-like toxin II-related cytotoxin associated with a case of hemolytic-uremic syndrome. J Clin Microbiol 34(2):463–465PubMedPubMedCentralGoogle Scholar
  182. Paul JH, Sullivan MB, Segall AM, Rohwer F (2002) Marine phage genomics. Comp Biochem Physiol B Biochem Mol Biol 133:463–476PubMedCrossRefGoogle Scholar
  183. Payne M, Oakey J, Owens L (2004) The ability of two different Vibrio spp. bacteriophages to infect Vibrio harveyi, Vibrio cholerae and Vibrio mimicus. J Appl Microbiol 97:663–672PubMedCrossRefPubMedCentralGoogle Scholar
  184. Pearson GDN, Woods A, Chiang SL, Mekalanos JJ (1993) Ctx genetic element encodes a site-specific recombination system and an intestinal colonization factor. Proc Natl Acad Sci USA 90:3750–3754PubMedCrossRefPubMedCentralGoogle Scholar
  185. Penadés JR, Christie GE (2015) The phage-inducible chromosomal islands: a family of highly evolved molecular parasites. In: Enquist LW (ed) Annual review of virology, vol 2, pp 181–201.  https://doi.org/10.1146/annurev-virology-031413-085446 CrossRefGoogle Scholar
  186. Perez G, Thierauf A, Maloy S (2009) Generalized transduction. In: Bacteriophages: methods in molecular biology. Humana Press, New York, pp 267–286Google Scholar
  187. Perry EB, Barrick JE, Bohannan BJM (2015) The molecular and genetic basis of repeatable coevolution between Escherichia coli and bacteriophage T3 in a laboratory microcosm. PLoS One 10(6):e0130639PubMedPubMedCentralCrossRefGoogle Scholar
  188. Petridis M, Bagdasarian M, Waldor MK, Walker E (2006) Horizontal transfer of Shiga toxin and antibiotic resistance genes among Escherichia coli strains in house fly (Diptera: Muscidae) gut. J Med Entomol 43(2):288–295PubMedCrossRefGoogle Scholar
  189. Picozzi C, Volponi G, Vigentini I, Grassi S, Foschino R (2012) Assessment of transduction of Escherichia coli stx2-encoding phage in dairy process conditions. Int J Food Microbiol 153:388–394PubMedCrossRefGoogle Scholar
  190. Plunkett G, Rose D, Durfee T, Blattner F (1999) Sequence of shiga toxin 2 phage 933w from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J Bacteriol 181(6):1767–1778PubMedPubMedCentralGoogle Scholar
  191. Popoff MR, Bouvet P (2013) Genetic characteristics of toxigenic Clostridia and toxin gene evolution. Toxicon 75:63–89PubMedCrossRefGoogle Scholar
  192. Potts SB, Roggli VL, Spock A (1995) Immunohistologic quantification of Pseudomonas aeruginosa in the tracheobronchial tree from patients with cystic-fibrosis. Pediatr Pathol Lab Med 15:707–721PubMedCrossRefPubMedCentralGoogle Scholar
  193. Puxty R, Millard A, Evans D, Scanlan D (2015) Shedding new light on viral photosynthesis. Photosynth Res 12(1):71–97CrossRefGoogle Scholar
  194. Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459(7244):207–212.  https://doi.org/10.1038/nature08060 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Rolain J, Fancello L, Desnues C, Raoult D (2011) Bacteriophages as vehicles of the resistome in cystic fibrosis. J Antimicrob Chemother 66(11):2444–2447PubMedCrossRefPubMedCentralGoogle Scholar
  196. Ross J, Topp E (2015) Abundance of antibiotic resistance genes in bacteriophage following soil fertilization with dairy manure or municipal biosolids, and evidence for potential transduction. Appl Environ Microbiol 81(22):7905–7913.  https://doi.org/10.1128/aem.02363-15 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759.  https://doi.org/10.1016/j.chemosphere.2006.03.026 CrossRefPubMedPubMedCentralGoogle Scholar
  198. Sarris PF, Ladoukakis ED, Panopoulos NJ, Scoulica EV (2014) A phage tail-derived element with wide distribution among both prokaryotic domains: a comparative genomic and phylogenetic study. Genome Biol Evol 6(7):1739–1747PubMedPubMedCentralCrossRefGoogle Scholar
  199. Scanlan PD, Hall AR, Lopez-Pascua LDC, Buckling A (2011) Genetic basis of infectivity evolution in a bacteriophage. Mol Ecol 20:981–989PubMedCrossRefGoogle Scholar
  200. Scott J, Nguyen SV, King CJ, Hendrickson C, McShan WM (2012) Phage-like Streptococcus pyogenes chromosomal islands (SpyCI) and mutator phenotypes: control by growth state and rescue by a SpyCI-encoded promoter. Front Microbiol 3:317.  https://doi.org/10.3389/fmicb.2012.00317 CrossRefPubMedPubMedCentralGoogle Scholar
  201. Shapiro JW, Williams E, Turner PE (2016) Evolution of parasitism and mutualism between filamentous phage M13 and Escherichia coli. PeerJ 4:e2060.  https://doi.org/10.7717/peerj.2060 CrossRefPubMedPubMedCentralGoogle Scholar
  202. Sharma P, Gupta SK, Rolain JM (2014) Whole genome sequencing of bacteria in cystic fibrosis as a model for bacterial genome adaptation and evolution. Expert Rev Anti-Infect Ther 12(3):343–355.  https://doi.org/10.1586/14787210.2014.887441 CrossRefPubMedGoogle Scholar
  203. Sinton LW, Hall CH, Lynch PA, Davies-Colley RJ (2002) Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters. Appl Environ Microbiol 68:1122–1131PubMedPubMedCentralCrossRefGoogle Scholar
  204. Smith DL, Rooks DJ, Fogg PCM, Darby AC, Thomson NR, McCarthy AJ, Allison HE (2012) Comparative genomics of Shiga toxin encoding bacteriophages. BMC Genomics 13(1):311PubMedPubMedCentralCrossRefGoogle Scholar
  205. Solheim M, Brekke MC, Snipen LG, Willems RJL, Nes IF, Brede DA (2011) Comparative genomic analysis reveals significant enrichment of mobile genetic elements and genes encoding surface structure-proteins in hospital-associated clonal complex 2 Enterococcus faecalis. BMC Microbiol 11:3.  https://doi.org/10.1186/1471-2180-11-3 CrossRefPubMedPubMedCentralGoogle Scholar
  206. Solheim HT, Sekse C, Urdahl AM, Wasteson Y, Nesse LL (2013) Biofilm as an environment for dissemination of stx genes by transduction. Appl Environ Microbiol 79:896–900PubMedPubMedCentralCrossRefGoogle Scholar
  207. Sommer MOA, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:1128–1131PubMedPubMedCentralCrossRefGoogle Scholar
  208. Strockbine N, Marques L, Newland J et al (1986) Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biological activities. Infect Immun 53(1):135–140PubMedPubMedCentralGoogle Scholar
  209. Steinberg KM, Levin BR (2007) Grazing protozoa and the evolution of the Escherichia coli O157:H7 Shiga toxin-encoding prophage. Proc R Soc B Biol Sci 274(1621):1921–1929CrossRefGoogle Scholar
  210. Subirats J, Sanchez-Melsio A, Borrego CM, Balcazar JL, Simonet P (2016) Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes. Int J Antimicrob Agents 48(2):163–167.  https://doi.org/10.1016/j.ijantimicag.2016.04.028 CrossRefPubMedGoogle Scholar
  211. Sugiyama H (1980) Clostridium botulinum neurotoxin. Microbiol Rev 44(3):419–448PubMedPubMedCentralGoogle Scholar
  212. Summer EJ, Gonzalez CF, Bomer M, Carlile T, Embry A, Kucherka AM, Lee J, Mebane L, Morrison WC, Mark L, King MD, LiPuma JJ, Vidaver AK, Young R (2005) Divergence and mosaicism among virulent soil phages of the Burkholderia cepacia complex. J Bacteriol 188(1):255–268CrossRefGoogle Scholar
  213. Tanji Y, Mizoguchi K, Yoichi M, Morita M, Kijima N, Kator H, Unno H (2003) Seasonal change and fate of coliphages infected to Escherichia coli O157:H7 in a wastewater treatment plant. Water Res 37:1136–1142PubMedCrossRefPubMedCentralGoogle Scholar
  214. Timms AR, Cambray-Young J, Scott AE, Petty NK, Connerton PL, Clarke L, Seeger K, Quail M, Cummings N, Maskell DJ, Thomson NR, Connerton IF (2010) Evidence for a lineage of virulent bacteriophages that target Campylobacter. BMC Genomics 11(1):214PubMedPubMedCentralCrossRefGoogle Scholar
  215. Tozzoli R, Grande L, Michelacci V, Ranieri P, Maugliani A, Caprioli A, Morabito S (2014) Shiga toxinconverting phages and the emergence of new pathogenic Escherichia coli: a world in motion. Front Cell Infect Microbiol 4:80PubMedPubMedCentralCrossRefGoogle Scholar
  216. Uyaguari MI, Fichot EB, Scott GI, Norman RS (2011) Characterization and quantitation of a novel β-lactamase gene found in a wastewater treatment facility and the surrounding coastal ecosystem. Appl Environ Microbiol 77(23):8226–8233PubMedPubMedCentralCrossRefGoogle Scholar
  217. van Overbeek LS, van Doorn J, Wichers JH, van Amerongen A, van Roermund HJW, Willemsen PTJ (2014) The arable ecosystem as battleground for emergence of new human pathogens. Front Microbiol 5:104PubMedPubMedCentralGoogle Scholar
  218. Varga M, Kuntova L, Pantucek R, Maslanova I, Ruzickova V, Doskar J (2012) Efficient transfer of antibiotic resistance plasmids by transduction within methicillin-resistant Staphylococcus aureus USA300 clone. FEMS Microbiol Lett 332:146–152PubMedCrossRefPubMedCentralGoogle Scholar
  219. Varga M, Pantucek R, Ruzickova V, Doskar J (2016) Molecular characterization of a new efficiently transducing bacteriophage identified in methicillin-resistant Staphylococcus aureus. J Gen Virol 97:258–267PubMedCrossRefPubMedCentralGoogle Scholar
  220. Vasse M, Torres-Barceló C, Hochberg ME (2015) Phage selection for bacterial cheats leads to population decline. Proc R Soc B Biol Sci 282(1818):20152207CrossRefGoogle Scholar
  221. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277–283Google Scholar
  222. Veses-Garcia M, Liu X, Rigden DJ, Kenny JG, McCarthy AJ, Allison HE (2015) Transcriptomic analysis of shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli. Appl Environ Microbiol 81(23):8118–8125.  https://doi.org/10.1128/aem.02034-15 CrossRefPubMedPubMedCentralGoogle Scholar
  223. Vishwakarma V, Periaswamy B, Pati NB, Slack E, Hardt WD, Suar M (2012) A novel phage element of Salmonella enterica serovar enteritidis p125109 contributes to accelerated type III secretion system 2-dependent early inflammation kinetics in a mouse colitis model. Infect Immun 80:3236–3246PubMedPubMedCentralCrossRefGoogle Scholar
  224. Wagner PL, Waldor MK (2002) Bacteriophage control of bacterial virulence. Infect Immun 70:3985–3993PubMedPubMedCentralCrossRefGoogle Scholar
  225. Waksman S (1961) Role of Antibiotics in Nature. Perspect Biol Med 4(3):271CrossRefGoogle Scholar
  226. Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272(5270):1910–1914PubMedCrossRefPubMedCentralGoogle Scholar
  227. Wang YQ, Zhang XB (2010) Genome analysis of deep-sea thermophilic phage D6E. Appl Environ Microbiol 76:7861–7866PubMedPubMedCentralCrossRefGoogle Scholar
  228. Wang CH, Chuan CN, Kuo HT, Zheng PX, Tsou CC, Wang SY, Tsai PJ, Chuang WJ, Lin YS, Liu CC, Wu JJ (2013a) Peroxide responsive regulator perR of Group A Streptococcus is required for the expression of phage-associated DNAse Sda1 under oxidative stress. PLoS One 8(12):e81882.  https://doi.org/10.1371/journal.pone.0081882 CrossRefPubMedPubMedCentralGoogle Scholar
  229. Wang QY, Kan BA, Wang RB (2013b) Isolation and characterization of the new mosaic filamentous phage VFJ phi of Vibrio cholerae. PLoS One 8:9CrossRefGoogle Scholar
  230. Weeks C, Ferretti J (1984) The gene for type A Streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12. Infect Immun 46(2):531–536PubMedPubMedCentralGoogle Scholar
  231. Wei RC, Ge F, Huang SY, Chen M, Wang R (2011) Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere 82(10):1408–1414.  https://doi.org/10.1016/j.chemosphere.2010.11.067 CrossRefPubMedPubMedCentralGoogle Scholar
  232. Wei YZ, Chesne MT, Terns RM, Terns MP (2015) Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic Acids Res 43:1749–1758PubMedPubMedCentralCrossRefGoogle Scholar
  233. Weinbauer MG, Suttle CA (1999) Lysogeny and prophage induction in coastal and offshore bacterial communities. Aquat Microb Ecol 18:217–225CrossRefGoogle Scholar
  234. Willner D, Furlan M (2010) Deciphering the role of phage in the cystic fibrosis airway. Virulence 1(4):309–313.  https://doi.org/10.4161/viru.1.4.12071 CrossRefPubMedPubMedCentralGoogle Scholar
  235. Willner D, Furlan M, Haynes M, Schmieder R, Angly F, Silva J, Tammadoni S, Nosrat B, Conrad D, Rohwer F (2009) Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS One 4(10):e7370PubMedPubMedCentralCrossRefGoogle Scholar
  236. Xia GQ, Wolz C (2014) Phages of Staphylococcus aureus and their impact on host evolution. Infect Genet Evol 21:593–601PubMedCrossRefPubMedCentralGoogle Scholar
  237. Yamaguchi T, Hayashi T, Takami H, Nakasone K, Ohnishi M, Nakayama K, Yamada S, Sugai M (2000) Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Mol Microbiol 38(4):694–705PubMedCrossRefPubMedCentralGoogle Scholar
  238. Yan YX, Shi YB, Cao DM, Meng XP, Xia LM, Sun JH (2011) Prevalence of stx phages in environments of a pig farm and lysogenic infection of the field E. coli O157 isolates with a recombinant converting phage. Curr Microbiol 62:458–464PubMedCrossRefGoogle Scholar
  239. Yeroshenko GA, Smirnova NI (2004) Role of temperate bacteriophage 139 in changing cholera toxin production in Vibrio cholerae classical biovar. Russ J Genet 40:348–355CrossRefGoogle Scholar
  240. Yoshida M, Yoshida-Takashima Y, Nunoura T, Takai K (2015) Identification and genomic analysis of temperate Pseudomonas bacteriophage PstS-1 from the Japan trench at a depth of 7000 m. Res Microbiol 166:668–676PubMedCrossRefGoogle Scholar
  241. Yu C, Ferretti J (1991) Molecular characterization of new group A streptococcal bacteriophages containing the gene for streptococcal erythrogenic toxin (speA). Mol Gen Genet 231:161–168PubMedCrossRefPubMedCentralGoogle Scholar
  242. Zabriskie J (1964) The role of temperate bacteriophage in the production of erythrogenic toxin by Group A Streptococci. J Exp Med 119:761–780PubMedPubMedCentralCrossRefGoogle Scholar
  243. Zhao L, Dong YH, Wang H (2010) Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci Total Environ 408(5):1069–1075.  https://doi.org/10.1016/j.scitotenv.2009.11.014 CrossRefPubMedPubMedCentralGoogle Scholar
  244. Zhou Y, Sugiyama H, Johnson E (1993) Transfer of neurotoxigenicity from Clostridium butyricum to a nontoxigenic Clostridium botulinum type E-like strain. Appl Environ Microbiol 59(11):3825–3831PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologySan Diego State UniversitySan DiegoUSA
  2. 2.Center for Microbial SciencesSan DiegoUSA

Personalised recommendations