Advertisement

Anti-infective Compounds from Marine Organisms

  • Elena Ancheeva
  • Mona El-Neketi
  • Georgios Daletos
  • Weaam Ebrahim
  • Weiguo Song
  • Wenhan Lin
  • Peter Proksch
Chapter
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB)

Abstract

The marine environment is a prolific source of bioactive compounds. During the last decades, research on marine-derived plants, animals, and microbes has provided an impressive number of structurally diverse anti-infective agents with antibacterial, antifungal, antiprotozoal, or antiviral activities. Moreover, several of these compounds possess novel mechanisms of action, which underlines their potential as leads in drug discovery. The present chapter provides an overview on marine-derived anti-infective agents, covering the literature between 2010 and 2016, with special focus on their structural features and mechanisms of action.

Notes

Acknowledgment

P.P. wants to thank DFG (GRK 2158) and the Manchot Foundation for support.

References

  1. 1.
    Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661PubMedCrossRefGoogle Scholar
  2. 2.
    Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529(7586):336–343PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12(5):371–387PubMedCrossRefGoogle Scholar
  4. 4.
    Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67(12):2141–2153PubMedCrossRefGoogle Scholar
  5. 5.
    World Health Organisation (2014) Antimicrobial resistance: 2014 global report on surveillance. World Health Organization, GenevaGoogle Scholar
  6. 6.
    World Health Organisation (2015) Global action plan on antimicrobial resistance. World Health Organization, GenevaGoogle Scholar
  7. 7.
    Proksch P, Putz A, Ortlepp S et al (2010) Bioactive natural products from marine sponges and fungal endophytes. Phytochem Rev 9(4):475–489CrossRefGoogle Scholar
  8. 8.
    Martins A, Vieira H, Gaspar H et al (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 12(2):1066–1101PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mayer AM, Nguyen M, Newman DJ et al (2016) The marine pharmacology and pharmaceuticals pipeline in 2015. FASEB J 30(1 Suppl):932–937Google Scholar
  10. 10.
    Proksch P, Edrada-Ebel R, Ebel R (2003) Drugs from the sea—opportunities and obstacles. Mar Drugs 1(1):5–17PubMedCentralCrossRefGoogle Scholar
  11. 11.
    Mariottini GL, Grice ID (2016) Antimicrobials from cnidarians. A new perspective for anti-infective therapy? Mar Drugs 14(48):1–19Google Scholar
  12. 12.
    Mondol MM, Kim JH, Lee H-S et al (2011) Macrolactin W, a new antibacterial macrolide from a marine Bacillus sp. Bioorg Med Chem Lett 21(12):3832–3835PubMedCrossRefGoogle Scholar
  13. 13.
    Mondol MM, Tareq FS, Kim JH et al (2011) Cyclic ether-containing macrolactins, antimicrobial 24-membered isomeric macrolactones from a marine Bacillus sp. J Nat Prod 74(12):2582–2587PubMedCrossRefGoogle Scholar
  14. 14.
    Tareq FS, Kim JH, Lee MA et al (2013) Antimicrobial gageomacrolactins characterized from the fermentation of the marine-derived bacterium Bacillus subtilis under optimum growth conditions. J Agric Food Chem 61(14):3428–3434PubMedCrossRefGoogle Scholar
  15. 15.
    Fehér D, Barlow R, McAtee J et al (2010) Highly brominated antimicrobial metabolites from a marine Pseudoalteromonas sp. J Nat Prod 73(11):1963–1966PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Sun P, Maloney KN, Nam S-J et al (2011) Fijimycins A–C, three antibacterial etamycin-class depsipeptides from a marine-derived Streptomyces sp. Bioorg Med Chem 19(22):6557–6562PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wu C, Tan Y, Gan M et al (2013) Identification of elaiophylin derivatives from the marine-derived actinomycete Streptomyces sp. 7-145 using PCR-based screening. J Nat Prod 76(11):2153–2157PubMedCrossRefGoogle Scholar
  18. 18.
    Raju R, Khalil ZG, Piggott AM et al (2014) Mollemycin A: an antimalarial and antibacterial glyco-hexadepsipeptide-polyketide from an Australian marine-derived Streptomyces sp. (CMB-M0244). Org Lett 16(6):1716–1719PubMedCrossRefGoogle Scholar
  19. 19.
    Hensler ME, Jang KH, Thienphrapa W et al (2014) Anthracimycin activity against contemporary methicillin-resistant Staphylococcus aureus. J Antibiot 67(8):549–553PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jang KH, Nam S-J, Locke JB, Kauffman CA et al (2013) Anthracimycin, a potent anthrax antibiotic from a marine-derived actinomycete. Angew Chem Int Ed Engl 52(30):7822–7824PubMedCrossRefGoogle Scholar
  21. 21.
    Williams DE, Dalisay DS, Chen J et al (2017) Aminorifamycins and sporalactams produced in culture by a Micromonospora sp. isolated from a Northeastern-Pacific marine sediment are potent antibiotics. Org Lett 19(4):766–769PubMedCrossRefGoogle Scholar
  22. 22.
    Shang Z, Salim AA, Khalil Z et al (2015) Viridicatumtoxins: expanding on a rare tetracycline antibiotic scaffold. J Org Chem 80(24):12501–12508PubMedCrossRefGoogle Scholar
  23. 23.
    Inokoshi J, Nakamura Y, Komada S et al (2016) Inhibition of bacterial undecaprenyl pyrophosphate synthase by small fungal molecules. J Antibiot 69(11):798–805PubMedCrossRefGoogle Scholar
  24. 24.
    Gao S-S, Li X-M, Zhang Y et al (2011) Comazaphilones A− F, azaphilone derivatives from the marine sediment-derived fungus Penicillium commune QSD-17. J Nat Prod 74(2):256–261PubMedCrossRefGoogle Scholar
  25. 25.
    Scopel M, Abraham W-R, Henriques AT et al (2013) Dipeptide cis-cyclo (Leucyl-Tyrosyl) produced by sponge associated Penicillium sp. F37 inhibits biofilm formation of the pathogenic Staphylococcus epidermidis. Bioorg Med Chem Lett 23(3):624–626PubMedCrossRefGoogle Scholar
  26. 26.
    Guo W, Zhang Z, Zhu T et al (2015) Penicyclones A–E, antibacterial polyketides from the deep-sea-derived fungus Penicillium sp. F23-2. J Nat Prod 78(11):2699–2703PubMedCrossRefGoogle Scholar
  27. 27.
    He Y, Tian J, Chen X et al (2016) Fungal naphto-γ-pyrones: potent antibiotics for drug-resistant microbial pathogens. Sci Rep 6:24291PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    de Carvalho MP, Abraham W-R (2012) Antimicrobial and biofilm inhibiting diketopiperazines. Curr Med Chem 19(21):3564–3577PubMedCrossRefGoogle Scholar
  29. 29.
    Song F, Liu X, Guo H et al (2012) Brevianamides with antitubercular potential from a marine-derived isolate of Aspergillus versicolor. Org Lett 14(18):4770–4773PubMedCrossRefGoogle Scholar
  30. 30.
    Yang K-L, Wei M-Y, Shao C-L et al (2012) Antibacterial anthraquinone derivatives from a sea anemone-derived fungus Nigrospora sp. J Nat Prod 75(5):935–941PubMedCrossRefGoogle Scholar
  31. 31.
    Han WB, Lu YH, Zhang AH et al (2014) Curvulamine, a new antibacterial alkaloid incorporating two undescribed units from a Curvularia species. Org Lett 16(20):5366–5369PubMedCrossRefGoogle Scholar
  32. 32.
    Niu S, Liu D, Hu X et al (2014) Spiromastixones A–O, antibacterial chlorodepsidones from a deep-sea-derived Spiromastix sp. fungus. J Nat Prod 77(4):1021–1030PubMedCrossRefGoogle Scholar
  33. 33.
    Niu S, Si L, Liu D et al (2016) Spiromastilactones: a new class of influenza virus inhibitors from deep-sea fungus. Eur J Med Chem 108:229–244PubMedCrossRefGoogle Scholar
  34. 34.
    Selvin J, Huxley A, Lipton A (2004) Immunomodulatory potential of marine secondary metabolites against bacterial diseases of shrimp. Aquaculture 230(1):241–248CrossRefGoogle Scholar
  35. 35.
    Blunt JW, Copp BR, Munro MH et al (2006) Marine natural products. Nat Prod Rep 23:26–78PubMedCrossRefGoogle Scholar
  36. 36.
    Chakraborty K, Lipton A, Raj RP et al (2010) Antibacterial labdane diterpenoids of Ulva fasciata Delile from southwestern coast of the Indian Peninsula. Food Chem 119(4):1399–1408CrossRefGoogle Scholar
  37. 37.
    Blunt JW, Copp BR, Munro MH et al (2010) Marine natural products. Nat Prod Rep 27(2):165PubMedCrossRefGoogle Scholar
  38. 38.
    Ioannou E, Quesada A, Rahman MM et al (2010) Dolabellanes with antibacterial activity from the brown alga Dilophus spiralis. J Nat Prod 74(2):213–222PubMedCrossRefGoogle Scholar
  39. 39.
    Nuzzo G, Ciavatta ML, Villani G et al (2012) Fulvynes, antimicrobial polyoxygenated acetylenes from the Mediterranean sponge Haliclona fulva. Tetrahedron 68(2):754–760CrossRefGoogle Scholar
  40. 40.
    Xu M, Davis RA, Feng Y et al (2012) Ianthelliformisamines A–C, antibacterial bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis. J Nat Prod 75(5):1001–1005PubMedCrossRefGoogle Scholar
  41. 41.
    Salim AA, Khalil ZG, Capon RJ (2012) Structural and stereochemical investigations into bromotyrosine-derived metabolites from southern Australian marine sponges, Pseudoceratina spp. Tetrahedron 68(47):9802–9807CrossRefGoogle Scholar
  42. 42.
    Gupta P, Sharma U, Schulz TC et al (2012) Bicyclic C21 terpenoids from the marine sponge Clathria compressa. J Nat Prod 75(6):1223–1227PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Sun S, Canning CB, Bhargava K et al (2015) Polybrominated diphenyl ethers with potent and broad spectrum antimicrobial activity from the marine sponge Dysidea. Bioorg Med Chem Lett 25(10):2181–2183PubMedCrossRefGoogle Scholar
  44. 44.
    Daletos G, Kalscheuer R, Koliwer-Brandl H et al (2015) Callyaerins from the marine sponge Callyspongia aerizusa: cyclic peptides with antitubercular activity. J Nat Prod 78(8):1910–1925PubMedCrossRefGoogle Scholar
  45. 45.
    Blunt JW, Copp BR, Keyzers RA et al (2012) Marine natural products. Nat Prod Rep 29(2):144PubMedCrossRefGoogle Scholar
  46. 46.
    Molinski TF, Dalisay DS, Lievens SL et al (2009) Drug development from marine natural products. Nat Rev Drug Discov 8(1):69–85PubMedCrossRefGoogle Scholar
  47. 47.
    Wang W, Kim H, Nam S-J et al (2012) Antibacterial butenolides from the Korean tunicate Pseudodistoma antinboja. J Nat Prod 75(12):2049–2054PubMedCrossRefGoogle Scholar
  48. 48.
    Diyabalanage T, Amsler CD, McClintock JB et al (2006) Palmerolide A, a cytotoxic macrolide from the Antarctic tunicate Synoicum adareanum. J Am Chem Soc 128(17):5630–5631PubMedCrossRefGoogle Scholar
  49. 49.
    Tadesse M, Strøm MB, Svenson J et al (2010) Synoxazolidinones A and B: novel bioactive alkaloids from the ascidian Synoicum pulmonaria. Org Lett 12(21):4752–4755PubMedCrossRefGoogle Scholar
  50. 50.
    Tadesse M, Tabudravu JN, Jaspars M et al (2011) The antibacterial ent-eusynstyelamide B and eusynstyelamides D, E, and F from the Arctic bryozoan Tegella cf. spitzbergensis. J Nat Prod 74(4):837–841PubMedCrossRefGoogle Scholar
  51. 51.
    Walsh C (2003) Where will new antibiotics come from? Nat Rev Microbiol 1(1):65–70PubMedCrossRefGoogle Scholar
  52. 52.
    Kim D-G, Moon K, Kim S-H et al (2012) Bahamaolides A and B, antifungal polyene polyol macrolides from the marine actinomycete Streptomyces sp. J Nat Prod 75(5):959–967PubMedCrossRefGoogle Scholar
  53. 53.
    Sato S, Iwata F, Yamada S et al (2012) Neomaclafungins A–I: oligomycin-class macrolides from a marine-derived actinomycete. J Nat Prod 75(11):1974–1982PubMedCrossRefGoogle Scholar
  54. 54.
    Wyche TP, Piotrowski JS, Hou Y et al (2014) Forazoline A: marine-derived polyketide with antifungal in vivo efficacy. Angew Chem Int Ed Engl 53(43):11583–11586PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Di Santo R (2010) Natural products as antifungal agents against clinically relevant pathogens. Nat Prod Rep 27(7):1084–1098PubMedCrossRefGoogle Scholar
  56. 56.
    Haga A, Tamoto H, Ishino M et al (2013) Pyridone alkaloids from a marine-derived fungus, Stagonosporopsis cucurbitacearum, and their activities against azole-resistant Candida albicans. J Nat Prod 76(4):750–754PubMedCrossRefGoogle Scholar
  57. 57.
    Wang C-Y, Wang B-G, Wiryowidagdo S et al (2003) Melophlins CO, thirteen novel tetramic acids from the marine sponge Melophlus sarassinorum. J Nat Prod 66(1):51–56PubMedCrossRefGoogle Scholar
  58. 58.
    Kumar R, Subramani R, Feussner K-D et al (2012) Aurantoside K, a new antifungal tetramic acid glycoside from a Fijian marine sponge of the genus Melophlus. Mar Drugs 10(1):200–208PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Larghi EL, Bohn ML, Kaufman TS (2009) Aaptamine and related products. Their isolation, chemical syntheses, and biological activity. Tetrahedron 65(22):4257–4282CrossRefGoogle Scholar
  60. 60.
    Shubina LK, Makarieva TN, Dyshlovoy SA et al (2010) Three new aaptamines from the marine sponge Aaptos sp. and their proapoptotic properties. Nat Prod Commun 5(12):1881–1884PubMedGoogle Scholar
  61. 61.
    Takahashi Y, Tanaka N, Kubota T et al (2012) Heteroaromatic alkaloids, nakijinamines, from a sponge Suberites sp. Tetrahedron 68(41):8545–8550CrossRefGoogle Scholar
  62. 62.
    Piao S-J, Song Y-L, Jiao W-H et al (2013) Hippolachnin A, a new antifungal polyketide from the South China Sea sponge Hippospongia lachne. Org Lett 15(14):3526–3529PubMedCrossRefGoogle Scholar
  63. 63.
    Wang S-Q, Du Q-S, Huang R-B et al (2009) Insights from investigating the interaction of oseltamivir (Tamiflu) with neuraminidase of the 2009 H1N1 swine flu virus. Biochem Biophys Res Commun 386(3):432–436PubMedCrossRefGoogle Scholar
  64. 64.
    Murumkar PR, Le L, Truong TN et al (2011) Determination of structural requirements of influenza neuraminidase type A inhibitors and binding interaction analysis with the active site of A/H1N1 by 3D-QSAR CoMFA and CoMSIA modeling. MedChemComm 2(8):710–719CrossRefGoogle Scholar
  65. 65.
    Gao H, Guo W, Wang Q et al (2013) Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activity. Bioorg Med Chem Lett 23(6):1776–1778PubMedCrossRefGoogle Scholar
  66. 66.
    Fan Y, Wang Y, Liu P et al (2013) Indole-diterpenoids with anti-H1N1 activity from the aciduric fungus Penicillium camemberti OUCMDZ-1492. J Nat Prod 76(7):1328–1336PubMedCrossRefGoogle Scholar
  67. 67.
    Peng J, Lin T, Wang W et al (2013) Antiviral alkaloids produced by the mangrove-derived fungus Cladosporium sp. PJX-41. J Nat Prod 76(6):1133–1140PubMedCrossRefGoogle Scholar
  68. 68.
    Shushni MA, Singh R, Mentel R et al (2011) Balticolid: a new 12-membered macrolide with antiviral activity from an Ascomycetous fungus of marine origin. Mar Drugs 9(5):844–851PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Chen X, Si L, Liu D et al (2015) Neoechinulin B and its analogues as potential entry inhibitors of influenza viruses, targeting viral hemagglutinin. Eur J Med Chem 93:182–195PubMedCrossRefGoogle Scholar
  70. 70.
    Collins PL (2007) Respiratory syncytial virus and metapneumovirus. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1601–1646Google Scholar
  71. 71.
    van den Hoogen BG (2007) Respiratory tract infection due to human metapneumovirus among elderly patients. Clin Infect Dis 44(9):1159–1160PubMedCrossRefGoogle Scholar
  72. 72.
    Paul VJ, Puglisi MP, Ritson-Williams R (2006) Marine chemical ecology. Nat Prod Rep 23(2):153–180PubMedCrossRefGoogle Scholar
  73. 73.
    Mendes G, Soares AR, Sigiliano L et al (2011) In vitro anti-HMPV activity of meroditerpenoids from marine alga Stypopodium zonale (Dictyotales). Molecules 16(10):8437–8450PubMedCrossRefGoogle Scholar
  74. 74.
    Ksiazek TG, Erdman D, Goldsmith CS et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348(20):1953–1966PubMedCrossRefGoogle Scholar
  75. 75.
    Wen C-C, Kuo Y-H, Jan J-T et al (2007) Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem 50(17):4087–4095PubMedCrossRefGoogle Scholar
  76. 76.
    Lin C-W, Tsai F-J, Tsai C-H et al (2005) Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res 68(1):36–42PubMedCrossRefGoogle Scholar
  77. 77.
    Ryu YB, Jeong HJ, Kim JH et al (2010) Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL pro inhibition. Bioorg Med Chem 18(22):7940–7947PubMedCrossRefGoogle Scholar
  78. 78.
    Ryu YB, Park S-J, Kim YM et al (2010) SARS-CoV 3CL pro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg Med Chem Lett 20(6):1873–1876PubMedCrossRefGoogle Scholar
  79. 79.
    Park J-Y, Kim JH, Kwon JM et al (2013) Dieckol, a SARS-CoV 3CL pro inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg Med Chem 21(13):3730–3737PubMedCrossRefGoogle Scholar
  80. 80.
    Park S-H, Song J-H, Kim T et al (2012) Anti-human rhinoviral activity of polybromocatechol compounds isolated from the Rhodophyta, Neorhodomela aculeata. Mar Drugs 10(10):2222–2233PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Imperatore C, Aiello A, D’Aniello F et al (2014) Alkaloids from marine invertebrates as important leads for anticancer drugs discovery and development. Molecules 19(12):20391–20423PubMedCrossRefGoogle Scholar
  82. 82.
    Fan G, Li Z, Shen S et al (2010) Baculiferins A–O, O-sulfated pyrrole alkaloids with anti-HIV-1 activity, from the Chinese marine sponge Iotrochota baculifera. Biorg Med Chem 18(15):5466–5474CrossRefGoogle Scholar
  83. 83.
    Bowden B, Coll J, Mitchell S et al (1978) Studies of Australian Soft Corals. IX. A novel nor-diterpene from the soft coral Sinularia leptoclados. Aust J Chem 31(9):2049–2056CrossRefGoogle Scholar
  84. 84.
    Cheng S-Y, Chuang C-T, Wen Z-H et al (2010) Bioactive norditerpenoids from the soft coral Sinularia gyrosa. Bioorg Med Chem 18(10):3379–3386PubMedCrossRefGoogle Scholar
  85. 85.
    Ahmed S, Ibrahim A, Arafa AS (2013) Anti-H5N1 virus metabolites from the Red Sea soft coral, Sinularia candidula. Tetrahedron Lett 54(19):2377–2381CrossRefGoogle Scholar
  86. 86.
    Coval SJ, Patton RW, Petrin JM et al (1996) A cembranolide diterpene farnesyl protein transferase inhibitor from the marine soft coral Lobophytum cristagalli. Biorg Med Chem Lett 6(7):909–912CrossRefGoogle Scholar
  87. 87.
    Wang S-K, Duh C-Y, Wu Y-C et al (1992) Studies on Formosan soft corals, II. Cytotoxic cembranolides from the soft coral Lobophytum michaelae. J Nat Prod 55(10):1430–1435PubMedCrossRefGoogle Scholar
  88. 88.
    Cheng S-Y, Chen P-W, Chen H-P et al (2011) New cembranolides from the Dongsha atoll soft coral Lobophytum durum. Mar Drugs 9(8):1307–1318PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wang S-K, Hsieh M-K, Duh C-Y (2013) New diterpenoids from soft coral Sarcophyton ehrenbergi. Mar Drugs 11(11):4318–4327PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Gong K-K, Tang X-L, Zhang G et al (2013) Polyhydroxylated steroids from the South China Sea soft coral Sarcophyton sp. and their cytotoxic and antiviral activities. Mar Drugs 11(12):4788–4798PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19(1):111–126PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Sanchez LM, Lopez D, Vesely BA et al (2010) Almiramides A− C: discovery and development of a new class of leishmaniasis lead compounds. J Med Chem 53(10):4187–4197PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Murray CJ, Rosenfeld LC, Lim SS et al (2012) Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379(9814):413–431PubMedCrossRefGoogle Scholar
  94. 94.
    Huang H, Yao Y, He Z et al (2011) Antimalarial β-carboline and indolactam alkaloids from Marinactinospora thermotolerans, a deep sea isolate. J Nat Prod 74(10):2122–2127PubMedCrossRefGoogle Scholar
  95. 95.
    Boonlarppradab C, Kauffman CA, Jensen PR et al (2008) Marineosins A and B, cytotoxic spiroaminals from a marine-derived actinomycete. Org Lett 10(24):5505–5508PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Salem SM, Kancharla P, Florova G et al (2014) Elucidation of final steps of the marineosins biosynthetic pathway through identification and characterization of the corresponding gene cluster. J Am Chem Soc 136(12):4565–4574PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kancharla P, Kelly JX, Reynolds KA (2015) Synthesis and structure–activity relationships of tambjamines and B-ring functionalized prodiginines as potent antimalarials. J Med Chem 58(18):7286–7309PubMedCrossRefGoogle Scholar
  98. 98.
    Fürstner A (2003) Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Angew Chem Int Ed Engl 42(31):3582–3603PubMedCrossRefGoogle Scholar
  99. 99.
    Schulze CJ, Navarro G, Ebert D et al (2015) Salinipostins A–K, long-chain bicyclic phosphotriesters as a potent and selective antimalarial chemotype. J Org Chem 80(3):1312–1320PubMedCrossRefGoogle Scholar
  100. 100.
    Shao C-L, Linington RG, Balunas MJ et al (2015) Bastimolide A, a potent antimalarial polyhydroxy macrolide from the marine cyanobacterium Okeania hirsuta. J Org Chem 80(16):7849–7855Google Scholar
  101. 101.
    Vining OB, Medina RA, Mitchell EA et al (2015) Depsipeptide companeramides from a Panamanian marine cyanobacterium associated with the coibamide producer. J Nat Prod 78(3):413–420PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lin A-S, Stout EP, Prudhomme J et al (2010) Bioactive Bromophycolides R−U from the Fijian red alga Callophycus serratus. J Nat Prod 73(2):275–278PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Taglialatela-Scafati O, Fattorusso E, Romano A et al (2010) Insight into the mechanism of action of plakortins, simple 1, 2-dioxane antimalarials. Org Biomol Chem 8(4):846–856PubMedCrossRefGoogle Scholar
  104. 104.
    Jiménez-Romero C, Ortiz I, Vicente J et al (2010) Bioactive cycloperoxides isolated from the Puerto Rican sponge Plakortis halichondrioides. J Nat Prod 73(10):1694–1700PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Davis RA, Duffy S, Fletcher S et al (2013) Thiaplakortones A–D: antimalarial thiazine alkaloids from the Australian marine sponge Plakortis lita. J Org Chem 78(19):9608–9613PubMedCrossRefGoogle Scholar
  106. 106.
    Feng Y, Davis RA, Sykes M et al (2010) Antitrypanosomal cyclic polyketide peroxides from the Australian marine sponge Plakortis sp. J Nat Prod 73(4):716–719PubMedCrossRefGoogle Scholar
  107. 107.
    Festa C, De Marino S, D’Auria MV et al (2013) New antimalarial polyketide endoperoxides from the marine sponge Plakinastrella mamillaris collected at Fiji Islands. Tetrahedron 69(18):3706–3713CrossRefGoogle Scholar
  108. 108.
    Feng Y, Davis RA, Sykes ML et al (2010) Antitrypanosomal pyridoacridine alkaloids from the Australian ascidian Polysyncraton echinatum. Tetrahedron Lett 51(18):2477–2479CrossRefGoogle Scholar
  109. 109.
    Regalado EL, Tasdemir D, Kaiser M et al (2010) Antiprotozoal steroidal saponins from the marine sponge Pandaros acanthifolium. J Nat Prod 73(8):1404–1410PubMedCrossRefGoogle Scholar
  110. 110.
    Ishigami S-T, Goto Y, Inoue N et al (2012) Cristaxenicin A, an antiprotozoal xenicane diterpenoid from the deep sea gorgonian Acanthoprimnoa cristata. J Org Chem 77(23):10962–10966PubMedCrossRefGoogle Scholar
  111. 111.
    Wei X, Rodríguez AD, Baran P et al (2010) Dolabellane-type diterpenoids with antiprotozoan activity from a Southwestern Caribbean Gorgonian octocoral of the genus Eunicea. J Nat Prod 73(5):925–934PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Finlayson R, Pearce AN, Page MJ et al (2011) Didemnidines A and B, indole spermidine alkaloids from the New Zealand ascidian Didemnum sp. J Nat Prod 74(4):888–892PubMedCrossRefGoogle Scholar
  113. 113.
    Chan STS, Patel PR, Ransom TR et al (2015) Structural elucidation and synthesis of eudistidine A: an unusual polycyclic marine alkaloid that blocks interaction of the protein binding domains of p300 and HIF-1α. J Am Chem Soc 137(16):5569–5575PubMedCrossRefGoogle Scholar
  114. 114.
    Williamson RT, Buevich AV, Martin GE et al (2014) LR-HSQMBC: a sensitive NMR technique to probe very long-range heteronuclear coupling pathways. J Org Chem 79(9):3887–3894PubMedCrossRefGoogle Scholar
  115. 115.
    Davis RA, Sykes M, Avery VM et al (2011) Convolutamines I and J, antitrypanosomal alkaloids from the bryozoan Amathia tortusa. Biorg Med Chem 19(22):6615–6619CrossRefGoogle Scholar
  116. 116.
    Genilloud O (2014) The re-emerging role of microbial natural products in antibiotic discovery. Antonie Van Leeuwenhoek 106(1):173–188PubMedCrossRefGoogle Scholar
  117. 117.
    Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta General Subjects 1830(6):3670–3695CrossRefGoogle Scholar
  118. 118.
    Daletos G, Ebrahim W, Ancheeva E et al (2018) Natural products from deep-sea-derived fungi—a new source of novel bioactive compounds? Curr Med Chem 25(2):186–207Google Scholar
  119. 119.
    Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2(12):666–673PubMedCrossRefGoogle Scholar
  120. 120.
    Montaser R, Luesch H (2011) Marine natural products: a new wave of drugs? Future Med Chem 3(12):1475–1489PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  2. 2.Faculty of Pharmacy, Department of PharmacognosyMansoura UniversityMansouraEgypt
  3. 3.Shouguang CityPeople’s Republic of China
  4. 4.State Key Laboratory of Natural and Biomimetic Drugs, Peking UniversityBeijingPeople’s Republic of China

Personalised recommendations