Advertisement

The Direct Synthesis of Ammonia

  • Anthony S. Travis
Chapter
  • 447 Downloads

Abstract

The market for fertilizers in industrialized countries expanded greatly after 1900. Artificial nitrogen products, if they could be manufactured at the right cost, offered the potential for substantial profits from the agricultural sector. The interest in nitrogen capture was especially strong at BASF, the leading dye manufacturer at the turn of the century. This interest had to do with overcoming Germany’s shortage of natural resources and its considerable dependence on imports from other countries. In the case of fixed nitrogen, there were concerns over not just British participation in the Chile saltpetre monopoly, and how long the supply of natural nitrate would last, but also external shocks such as economic and political events, including the outbreak of war. Moreover, nitrogen offered an opportunity for diversification at German firms away from dyes. To provide a clear picture of how BASF came to lead in nitrogen fixation developments in the early 1900s it is necessary to review the firm’s rise to a leading place in the realm of science-based industry.

References

  1. 1.
    Reinhardt C, Travis AS (2000) Heinrich Caro and the creation of modern chemical industry. Kluwer, Dordrecht.Google Scholar
  2. 2.
    Felck G (1993) Wilhelm Ostwald, 1853–1932. In: James LK (ed), Nobel laureates in chemistry 1901–1992. History of modern chemical sciences. American Chemical Society, Washington DC, pp 61–68.Google Scholar
  3. 3.
    Stoltzenberg D (1994) Fritz Haber: Chemiker, Nobelpreisträger, Deutscher, Jude: Eine Biographie. VCH, Weinheim, pp 141–143.Google Scholar
  4. 4.
    Holdermann K (1949) Carl Bosch und die Naturwissenschaft. Naturwiss 36(6):161–165.Google Scholar
  5. 5.
    Krauch C (1940) Carl Bosch zum Gedächtnis. Angew Chem 53:285–288.Google Scholar
  6. 6.
    Stoltzenberg D (2004) Fritz Haber: Chemist, Nobel laureate, German, Jew. Chemical Heritage Press, Philadelphia, quoting Ostwald, on p 130.Google Scholar
  7. 7.
    Kilburn Scott E (1912) The manufacture of nitrates from the atmosphere. Nature 89(2228)(11 July):490–492, on 492.Google Scholar
  8. 8.
    Kilburn Scott E (1915) Production of nitrates from air, with special reference to a new electric furnace. J Soc Chem Ind 34(3)(15 February):113–126, on 113.Google Scholar
  9. 9.
    Kilburn Scott E (obituary) (1941) Engineer, London 172(4462)(18 July):41.Google Scholar
  10. 10.
    Goran MH (1967) The story of Fritz Haber. University of Oklahama Press, Norman.Google Scholar
  11. 11.
    Wille HH (1969) Der Januskopf: Leben und Wirken des Physikochemikers und Nobelpreisträgers Fritz Haber. Verlag Neues Leben, Berlin.Google Scholar
  12. 12.
    Harris H (1992) To serve mankind in peace and the fatherland in war: the case of Fritz Haber. Ger Hist 10(1):24–38.Google Scholar
  13. 13.
    Stoltzenberg D (1994) Fritz Haber: Chemiker, Nobelpreisträger, Deutscher, Jude: Eine Biographie. VCH, Weinheim.Google Scholar
  14. 14.
    Szöllösi-Janze M (1998) Fritz Haber 1868–1934: Eine Biographie. VCH-Beck, Munich.Google Scholar
  15. 15.
    Dunikowska M, Turko L (2011) Fritz Haber, the damned scientist. Angew Chem Int Edit 50:10050–10062.Google Scholar
  16. 16.
    Hoffmann R, Laszlow P (2001) Coping with Fritz Haber’s somber literary shadow. Angew Chem Int Edit 40:4599–4604.PubMedGoogle Scholar
  17. 17.
    Smil V (2001) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT Press, Cambridge, MA, pp 41–48.Google Scholar
  18. 18.
    Stoltzenberg D (2004) Fritz Haber: Chemist, Nobel laureate, German, Jew. Chemical Heritage Press, Philadelphia.Google Scholar
  19. 19.
    Charles D (2005) Master mind: the rise and fall of Fritz Haber, the Nobel laureate who launched the age of chemical warfare. Harper Collins, New York. In the UK: Between genius and genocide: the tragedy of Fritz Haber, father of chemical warfare. Cape, London.Google Scholar
  20. 20.
    Friedrich B (2005/2006) Fritz Haber (1868–1934). Angew Chem Int Edit 44:3957–3961, and 45:4053–4055.Google Scholar
  21. 21.
    Thomas H (2008) The alchemy of air: a Jewish genius, a doomed tycoon, and a scientific discovery that fed the world but fueled the rise of Hitler. Harmony Books/Crown Publishing Group/Random House, New York.Google Scholar
  22. 22.
    Ragussis D (2008) Haber: the father of gas warfare. Film directed by Ragussis (United States).Google Scholar
  23. 23.
    Stoltzenberg D (2004) Fritz Haber: Chemist, Nobel laureate, German, Jew. Chemical Heritage Press, Philadelphia, quoting Haber, on p 22.Google Scholar
  24. 24.
    Stoltzenberg D (1994). Fritz Haber: Chemiker, Nobelpreisträger, Deutscher, Jude: Eine Biographie. VCH, Weinheim, 28–29.Google Scholar
  25. 25.
    Müller G (1909) Die Chemische Industrie. BG Teubner, Leipzig, p 199.Google Scholar
  26. 26.
    Schuster C (1976) Wissenschaft und Technik. BASF, Ludwigshafen, pp 108–127.Google Scholar
  27. 27.
    von Leitner G (1993) Der Fall Clara Immerwahr: Leben für eine humane Wissenschaft. CH Beck, Munich.Google Scholar
  28. 28.
    Sicheritz H (2014) Die Häfte des Lebens. Femina doctissima. Clara Immerwahr. Television film, directed by Sicheritz (Austria).Google Scholar
  29. 29.
    Ramsay W, Young S (1884) The decomposition of ammonia by heat. J Chem Soc 45:88–93.Google Scholar
  30. 30.
    Perman EP (1905) The direct synthesis of ammonia. Proc R Soc London 76:167–174.Google Scholar
  31. 31.
    Haber F, van Oordt G (1905) Uber Bildung von Ammoniak aus den Elementen. Z anorg Chem 43:111–115; 44:341–378; 47:42–44.Google Scholar
  32. 32.
    Dronsfield AT, Morris PJT (2007) Who really discovered the Haber pocess? http://www.rsc.org/Education/Eic/issues/2007May/WhoReallyDiscoveredHaberProcess.asp (accessed 19 August 2014).
  33. 33.
    Travis AS (1984) The high pressure chemists. Brent Schools and Industry Project, Wembley, quoting Haber, on p 15.Google Scholar
  34. 34.
    Gal J (2015) Remembering Fritz Haber in the year 2015. L’actualite chimique, nos. 397–398 (June–July), pp 114–121.Google Scholar
  35. 35.
    Barkan DK (1999) Walther Nernst and the transition to modern physical science. Cambridge University Press, Cambridge, pp 129–131.Google Scholar
  36. 36.
    But see Uline MJ, Corti DS (2008) The ammonia synthesis reaction: an exception to the Le Chatelier principle and effects of nonideality. J Chem Ed 83(1)(January):138–144.Google Scholar
  37. 37.
    Holdermann K (1957) Alwin Mittasch, 1869–1953, in Memoriam. Chem Ber 90:xli–liv.Google Scholar
  38. 38.
    Schuster C (1976) Wissenschaft und Technik. BASF, Ludwigshafen, pp 124–125.Google Scholar
  39. 39.
    Smil V (2001) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT Press, Cambridge, MA, pp 75–82.Google Scholar
  40. 40.
    Stoltzenberg D (2004) Fritz Haber: chemist, Nobel laureate, German, Jew. Chemical Heritage Press, Philadelphia, p 89.Google Scholar
  41. 41.
    Ipatieff VN (1946) In: Ipatieff J, et al. (eds), The life of a chemist: memoirs of Vladimir N. Ipatieff (trans. Haensel V, Lusher RH). Stanford University Press, Stanford, pp 154–155, 327–328.Google Scholar
  42. 42.
    Sheppard D (2017) Robert Le Rossignol, 1884–1976: engineer of the ‘Haber’ process. Notes Rec R Soc London. DOI: https://doi.org/10.1098/rsnr.2016.0019 (accessed 18 March 2017).
  43. 43.
    Travers MW (1901) The experimental study of gases. Macmillan, London, pp 196–206.Google Scholar
  44. 44.
    Ipatieff VN (1936) Catalytic reactions at high pressures and temperatures. Macmillan, New York, p 31.Google Scholar
  45. 45.
    Haber F, Le Rossignol R (1908) Bestimmung des Ammoniakgleichgewichtes unter Druck. Z Elektrochem 14:181–196; 513–514.Google Scholar
  46. 46.
    Topham SA (1985) The history of the catalytic synthesis of ammonia. In: Anderson JR, Boudart M (eds), Catalysis: science and technology, vol. VII. Springer, Berlin, pp 1–50.Google Scholar
  47. 47.
    Tamaru K (1991) The history of the development of the ammonia synthesis. In: Jennings JR (ed), Ammonia synthesis: fundamentals and practice. Plenum, New York, pp 1–18.Google Scholar
  48. 48.
    Tamaru Oyama H (2015) Setsuro Tamaru and Fritz Haber: links between Japan and Germany in science and technology. Chem Rec 15(2):535–549.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Schuster C (1976) Wissenschaft und Technik. BASF, Ludwigshafen, p 126.Google Scholar
  50. 50.
    Haber F, Le Rossignol R (1913) Ammonia; technical preparation of….from its elements. J Soc Chem Ind 32(3)(15 February):134–138.Google Scholar
  51. 51.
    Le Rossignol R (1928) Zur Geschichte der Herstellung des synthetischen Ammoniaks. Naturwiss 186:1070–1071.Google Scholar
  52. 52.
    Haber F (1920) The synthesis of ammonia from its elements, Nobel lecture, June 2, 1920. Nobel lectures including presentation speeches and laureates biographies, chemistry, 1901–1921. Nobel Foundation/Elsevier Publishing, Amsterdam, pp 326–340.Google Scholar
  53. 53.
    Translation of Fritz Haber to BASF, 3 July 1909, in Zardi U, Zardi F (2009) 100 not out. History of the birth of the modern synthetic ammonia industry. Paper presented at the Nitrogen & Syngas International Conference and Exhibition, Rome, Italy (22–25 February 2009).Google Scholar
  54. 54.
    Mittasch A (1951) Geschichte der Ammoniak-synthese. Verlag Chemie, Weinheim.Google Scholar
  55. 55.
    Mittasch A (1950) Early studies of multi component catalysts. In: Komarewsky VI, Rideal RK (eds), Advances in catalysis, vol. II. Academic Press, New York, pp 81–104.Google Scholar
  56. 56.
    Holdermann K (1954) Im Banne der Chemie: Carl Bosch, Leben und Werk. Econ-Verlag, Düsseldorf, p 95.Google Scholar
  57. 57.
    Appl M (1982) The Haber-Bosch process and the development of chemical engineering. In: Furter WF (ed), A century of chemical engineering. Plenum, New York, pp 29–53, on 39–43.Google Scholar
  58. 58.
    Bernthsen A (1912) Synthetic ammonia. Ind Eng Chem 4(10)(1 October):760–767.Google Scholar
  59. 59.
    Teed PL (1919) The chemistry and manufacture of hydrogen. Longmans, Green & Co., New York, pp 113–125.Google Scholar
  60. 60.
    Travis AS (1998) High pressure industrial chemistry: the first steps, 1909–1913, and the impact. In: Travis AS, Schröter HG, Homburg E, Morris PJT (eds), Determinants in the evolution of the European chemical industry, 1900–1939: new technologies, political frameworks, markets and companies. Kluwer, Dordrecht, pp 3–21, on 11–12.Google Scholar
  61. 61.
    Reinhardt C (1998) Basic research in industry: two case studies at I.G. Farbenindustrie AG in the 1920’s and 1930’s. In: Travis AS, Schröter HG, Homburg E, Morris PJT (eds), Determinants in the evolution of the European chemical industry, 1900–1939: new technologies, political frameworks, markets and companies. Kluwer, Dordrecht, pp 67–88, on 81.Google Scholar
  62. 62.
    James J, Steinhauser T, Hoffman D, Friedrich B (2011) One hundred years at the intersection of chemistry and physics: The Fritz Haber Institute of the Max Planck Society, 1911–2011. Walter de Gruyter, Berlin/Boston.Google Scholar
  63. 63.
    Stern F (1999) Einstein’s German world. Princeton University Press, Princeton, pp 59–164.Google Scholar
  64. 64.
    Nitrogen products-miscellaneous nitrogen fixation-ammonia manufacture. The Solvay Process Company. Nitrogen products department. Rep. no. 750. Works at European. October 2nd, 1923. Nitrogen fixation. Ammonia manufacture. Haber, Cyanamide, Serpek, Hauser, Ostwald processes. Dr L. C. Jones. Report drawn up on 2 October 1913, Paris, France. Solvay Process Company archives, microfilm roll 17. Sidney M. Edelstein Library, Israel National Library.Google Scholar
  65. 65.
    Travis AS (1984) The high pressure chemists. Brent Schools and Industry Project, Wembley, p 50.Google Scholar
  66. 66.
    Lunge G (1916) Handbuch der Schwefelsäurefabrikation und ihrer Nebenzweige, 2 vols. Friedr. Vieweg & Sohn, Braunschweig.Google Scholar
  67. 67.
    McDonald D, Hunt LB (1982) A history of platinum and its allied metals. Johnson Matthey, London, pp 387–389.Google Scholar
  68. 68.
    Lunge G (1916) Handbuch der Schwefelsäurefabrikation und ihrer Nebenzweige, Band I. Friedr. Vieweg & Sohn, Braunschweig, pp 284–285.Google Scholar
  69. 69.
    Hunt LB (1958) The ammonia oxidation process for nitric acid manufacture. Platin Met Rev 2(4):129–134, on 133.Google Scholar
  70. 70.
    Inskeep GC, Henry TH (1954) Nitric acid in Great Britain: oxidation of ammonia. In: Modern chemical processes: a series of articles describing chemical manufacturing plants, vol. III. Reinhold, New York, pp 218–227, on 218.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anthony S. Travis
    • 1
  1. 1.Sidney M. Edelstein Center for the History and Philosophy of Science, Technology and MedicineThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations