Advertisement

PET/CT Findings in Renal Cancer

  • Alexandra V. Nikaki
Chapter

Abstract

The incidence of renal cell carcinoma (RCC) at all stages is rising, with clear cell histologic type being the commonest [1]. However, it has been reported that 15% of small renal masses are benign [2]. Partial or total nephrectomy is the current treatment for RCC. Contrast-enhanced computed tomography (CECT)-renal protocol [3] is the imaging modality of choice in detection and differentiation of solid renal masses versus cystic ones, even small ones of size <2 cm; however, it faces certain limitations consisting of its lower ability to differentiate between benign and malignant lesions, as well as indolent from aggressive phenotype [2, 3]. The role of magnetic resonance imaging (MRI) is currently mostly restricted to characterization of equivocal computed tomography (CT) findings, evaluation of perirenal fat, and venous cava thrombosis. The urge of functional characterization of renal masses has brought the utilization of PET/CT at the foreground [2, 3].

References

  1. 1.
    Cairns P (2011) Renal cell carcinoma. Cancer Biomark 9(1–6):461–473CrossRefGoogle Scholar
  2. 2.
    Smaldone MC, Chen DY, Yu JQ, Plimack ER (2012) Potential role of (124)I-girentuximab in the presurgical diagnosis of clear-cell renal cell cancer. Biologics 6:395–407PubMedPubMedCentralGoogle Scholar
  3. 3.
    Khandani AH, Rathmell WK (2012) Positron emission tomography in renal cell carcinoma: an imaging biomarker in development. Semin Nucl Med 42(4):221–230CrossRefGoogle Scholar
  4. 4.
    Lawrentschuk N, Davis ID, Bolton DM, Scott AM (2010) Functional imaging of renal cell carcinoma. Nat Rev Urol 7(5):258–266CrossRefGoogle Scholar
  5. 5.
    Takahashi M, Kume H, Koyama K et al (2015) Preoperative evaluation of renal cell carcinoma by using 18F-FDG PET/CT. Clin Nucl Med 40(12):936–940CrossRefGoogle Scholar
  6. 6.
    Ramdave S, Thomas GW, Berlangieri SU et al (2001) Clinical role of F-18 fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. J Urol 166(3):825–830CrossRefGoogle Scholar
  7. 7.
    Aide N, Cappele O, Bottet P et al (2003) Efficiency of [(18)F]FDG PET in characterising renal cancer and detecting distant metastases: a comparison with CT. Eur J Nucl Med Mol Imaging 30(9):1236–1245CrossRefGoogle Scholar
  8. 8.
    Ozülker T, Ozülker F, Ozbek E, Ozpaçaci T (2011) A prospective diagnostic accuracy study of F-18 fluorodeoxyglucose-positron emission tomography/computed tomography in the evaluation of indeterminate renal masses. Nucl Med Commun 32(4):265–272CrossRefGoogle Scholar
  9. 9.
    Kang DE, White RL Jr, Zuger JH et al (2004) Emission tomography for detection of renal cell carcinoma. J Urol 171(5):1806–1809CrossRefGoogle Scholar
  10. 10.
    Wu HC, Yen RF, Shen YY et al (2002) Comparing whole body 18F–2-deoxyglucose positron emission tomography and technetium-99 m methylene diphosphate bone scan to detect bone metastases in patients with renal cell carcinomas: a preliminary report. J Cancer Res Clin Oncol 128(9):503–506CrossRefGoogle Scholar
  11. 11.
    Kayani I, Avril N, Bomanji J et al (2011) Sequential FDG-PET/CT as a biomarker of response to Sunitinib in metastatic clear cell renal cancer. Clin Cancer Res 17(18):6021–6028CrossRefGoogle Scholar
  12. 12.
    Namura K, Minamimoto R, Yao M et al (2010) Impact of maximum standardized uptake value (SUVmax) evaluated by 18-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report. BMC Cancer 10:667CrossRefGoogle Scholar
  13. 13.
    Misch D, Steffen IG, Schönberger S et al (2008) Use of positron emission tomography for staging, preoperative response assessment and posttherapeutic evaluation in children with Wilms tumour. Eur J Nucl Med Mol Imaging 35(9):1642–1650CrossRefGoogle Scholar
  14. 14.
    Nakatani K, Nakamoto Y, Saga T et al (2011) The potential clinical value of FDG-PET for recurrent renal cell carcinoma. Eur J Radiol 79(1):29–35CrossRefGoogle Scholar
  15. 15.
    Park JW, Jo MK, Lee HM (2009) Significance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography for the postoperative surveillance of advanced renal cell carcinoma. BJU Int 103(5):615–619CrossRefGoogle Scholar
  16. 16.
    Safaei A, Figlin R, Hoh CK et al (2002) The usefulness of F-18 deoxyglucose whole-body positron emission tomography (PET) for re-staging of renal cell cancer. Clin Nephrol 57(1):56–62CrossRefGoogle Scholar
  17. 17.
    Kumar R, Shandal V, Shamim SA et al (2010) Role of FDG PET-CT in recurrent renal cell carcinoma. Nucl Med Commun 31(10):844–850PubMedGoogle Scholar
  18. 18.
    Alongi P, Picchio M, Zattoni F et al (2016) Recurrent renal cell carcinoma: clinical and prognostic value of FDG PET/CT. Eur J Nucl Med Mol Imaging 43(3):464–473CrossRefGoogle Scholar
  19. 19.
    Nakaigawa N, Kondo K, Tateishi U et al (2016) FDG PET/CT as a prognostic biomarker in the era of molecular-targeting therapies: max SUVmax predicts survival of patients with advanced renal cell carcinoma. BMC Cancer 16:67CrossRefGoogle Scholar
  20. 20.
    Ueno D, Yao M, Tateishi U et al (2012) Early assessment by FDG-PET/CT of patients with advanced renal cell carcinoma treated with tyrosine kinase inhibitors is predictive of disease course. BMC Cancer 12:162CrossRefGoogle Scholar
  21. 21.
    Divgi CR, Pandit-Taskar N, Jungbluth AA et al (2007) Preoperative characterisation of clear- cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol 8(4):304–310CrossRefGoogle Scholar
  22. 22.
    Divgi CR, Uzzo RG, Gatsonis C et al (2013) Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J Clin Oncol 31(2):187–194CrossRefGoogle Scholar
  23. 23.
    Gerety EL, Lawrence EM, Wason J et al (2015) Prospective study evaluating the relative sensitivity of 18F-NaF PET/CT for detecting skeletal metastases from renal cell carcinoma in comparison to multidetector CT and 99mTc-MDP bone scintigraphy, using an adaptive trial design. Ann Oncol 26(10):2113–2118CrossRefGoogle Scholar
  24. 24.
    Hugonnet F, Fournier L, Medioni J et al (2011) Metastatic renal cell carcinoma: relationship between initial metastasis hypoxia, change after 1 month’s sunitinib, and therapeutic response: an 18F- Fluoromisonidazole PET/CT study. J Nucl Med 52:1048–1055CrossRefGoogle Scholar
  25. 25.
    Liu G, Jeraj R, Vanderhoek M et al (2011) Pharmacodynamic study using FLT PET/CT in patients with renal cell cancer and other solid malignancies treated with sunitinib malate. Clin Cancer Res 17(24):7634–7644CrossRefGoogle Scholar
  26. 26.
    Middendorp M, Maute L, Sauter B et al (2010) Initial experience with 18F-fluoroethylcholine PET/ CT in staging and monitoring therapy response of advanced renal cell carcinoma. Ann Nucl Med 24(6):441–446CrossRefGoogle Scholar
  27. 27.
    Horn KP, Yap JT, Agarwal N et al (2015) FDG and FLT-PET for early measurement of response to 37.5 mg daily sunitinib therapy in metastatic renal cell carcinoma. Cancer Imaging 15:15CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexandra V. Nikaki
    • 1
    • 2
  1. 1.Clinical Physiology DepartmentKanta-Hame Central HospitalHameenlinnaFinland
  2. 2.Nuclear Medicine and PET/CT DepartmentHygeia HospitalAthensGreece

Personalised recommendations