PET/CT: Is There a Role?

  • Julia V. Malamitsi


In this concise review the role of PET/CT and PET/MRI in the study and management of brain tumors, mainly gliomas and brain metastases will be presented. The radiopharmaceuticals used which are markers for glucose metabolism, amino acid transport, proliferation rate, membrane synthesis, hypoxia, angiogenesis as well as others will be described. The contribution of PET in primary brain tumors concerns identification of tumor, grading and prognosis, biopsy guiding, radiation therapy planning, treatment monitoring and theragnostics and in brain metastases differentiation between recurrence and necrosis and response to radiation therapy respectively.


  1. 1.
    Afshar-Oromieh A, Giesel FL, Linhart HG et al (2012) Detection of cranial meningiomas: comparison of 68 Ga-DOTATOC PET/CT and contrast enhanced MRI. Eur J Nucl Med Mol Imaging 39:1409–1415CrossRefGoogle Scholar
  2. 2.
    La Fougère C, Suchorska B, Bartenstein P et al (2011) Molecular imaging of gliomas with PET: opportunities and limitations. Neuro-Oncology 13:806–819CrossRefGoogle Scholar
  3. 3.
    Shi X, Yi C, Wang X et al (2015) 13N-ammonia combined with 18F-FDG could discriminate between necrotic high-grade gliomas and brain abscess. Clin Nucl Med 40:195–199CrossRefGoogle Scholar
  4. 4.
    Heiss P, Mayer S, Herz M et al (1999) Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 40:1367–1373PubMedGoogle Scholar
  5. 5.
    Chen W, Silverman DH, Delaloye S et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:904–911PubMedGoogle Scholar
  6. 6.
    Kamson DO, Mittal S, Buth A et al (2013) Differentiation of glioblastomas from metastatic brain tumors by tryptophan uptake and kinetic analysis: a PET study with MRI comparison. Mol Imaging 12:327–337CrossRefGoogle Scholar
  7. 7.
    Kondo A, Ishii H, Aoki S et al (2016) Phase IIa clinical study of [18F] fluciclovine: efficacy and safety of a new PET tracer for brain tumors. Ann Nucl Med 30:608–618CrossRefGoogle Scholar
  8. 8.
    Chen W, Cloughesy T, Kamdar N et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46:945–952PubMedGoogle Scholar
  9. 9.
    Kwee SA, Ko JP, Jiang CS et al (2007) Solitary brain lesions enhancing at MR imaging: evaluation with fluorine18 fluorocholine PET. Radiology 244:557–565CrossRefGoogle Scholar
  10. 10.
    Toyonaga T, Hirata K, Yamaguchi S et al (2016) (18)F-fluoromisonidazole positron emission tomography can predict pathological necrosis of brain tumors. Eur J Nucl Med Mol Imaging 43:1469–1476CrossRefGoogle Scholar
  11. 11.
    Dealing JLJ, Lewis JS, Mc Carthy DW (1998) Redox-active metal complexes for imaging hypoxic tissues: structure activity relationships in copper (II)bis (thiosemicarbazone) complexes. Chem Commun (Camb) 22:2531–2532CrossRefGoogle Scholar
  12. 12.
    Schnell O, Krebs B, Carlsen J et al (2009) Imaging of integrin αvβ3 expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. Neuro-Oncology 11:861–870CrossRefGoogle Scholar
  13. 13.
    Li D, Zhao X, Zhang L et al (2014) 68Ga-PRGD2 PET/CT in the evaluation of glioma: a prospective study. Mol Pharm 11:3923–3929CrossRefGoogle Scholar
  14. 14.
    Lendvai G, Estrada S, Bergström M et al (2009) Radiolabelled oligonucleotides for imaging of gene expression with PET. Curr Med Chem 16:4445–4461CrossRefGoogle Scholar
  15. 15.
    Allen AM, Ben-Ami M, Reshef A et al (2012) Assessment of response of brain metastases to radiotherapy by PET imaging of apoptosis with 18F-ML-10. Eur J Nucl Med Mol Imaging 39:1400–1408CrossRefGoogle Scholar
  16. 16.
    Strauss LG, Koczan D, Seiz M et al (2012) Correlation of the Ga-68-bombesin analog Ga-68-BZH3 with receptors expression in gliomas as measured by quantitative dynamic positron emission tomography (dPET) and gene arrays. Mol Imaging Biol 14:376–383CrossRefGoogle Scholar
  17. 17.
    Goldman S, Levivier M, Pirotte B et al (1997) Regional methionine and glucose uptake in high- grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 38:1459–1462PubMedGoogle Scholar
  18. 18.
    Yamaguchi S, Kobayashi H, Hirata K et al (2011) Detection of histological anaplasia in gliomas with oligodendroglial components using positron emission tomography with (18)F-FDG and (11)C-methionine: report of two cases. J Neuro-Oncol 101:335–341CrossRefGoogle Scholar
  19. 19.
    Choi H, Bang JI, Cheon GJ et al (2015) (18)F-fluorodeoxyglucose and (11)C-methionine positron emission tomography in relation to methylguanine methyltransferase promoter methylation in high grade gliomas. Nucl Med Commun 36:211–218CrossRefGoogle Scholar
  20. 20.
    Niyazi M, Schnell O, Suchorska B et al (2012) FET-PET assessed recurrence pattern after radio-chemotherapy in newly diagnosed patients with glioblastoma is influenced by MGMT methylation status. Radiother Oncol 104:78–82CrossRefGoogle Scholar
  21. 21.
    Herholz K (2017) Brain tumors: an update on clinical PET research in gliomas. Semin Nucl Med 47:5–17CrossRefGoogle Scholar
  22. 22.
    Shi X, Zhang X, Yi C et al (2013) The combination of 13N-ammonia and 18F-FDG in predicting primary central nervous system lymphomas in immunocompetent patients. Clin Nucl Med 38:98–102CrossRefGoogle Scholar
  23. 23.
    Pirotte B, Goldman S, Massager N et al (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45:1293–1298PubMedGoogle Scholar
  24. 24.
    Becherer A, Karanikas G, Szabó M et al (2003) Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 30:1561–1567CrossRefGoogle Scholar
  25. 25.
    Kunz M, Thon N, Eigenbrod S et al (2011) Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro-Oncology 13:307–316CrossRefGoogle Scholar
  26. 26.
    Dunet V, Rossier C, Buck A et al (2012) Performance of 18F-fluoro-ethyL-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and metaanalysis. J Nucl Med 53:207–214CrossRefGoogle Scholar
  27. 27.
    Nariai T, Tanaka Y, Wakimoto H et al (2005) Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507CrossRefGoogle Scholar
  28. 28.
    Eo JS, Jeong JM (2016) Angiogenesis imaging using 68Ga-RGD PET/CT:Therapeutic implications. Semin Nucl Med 46:419–427CrossRefGoogle Scholar
  29. 29.
    Kawai N, Lin W, Cao WD et al (2014) Correlation between [18F] fluoromisonidazole PET and expression of HIF-1alpha and VEGF in newly diagnosed and recurrent malignant gliomas. Eur J Nucl Med Mol Imaging 41:1870–1878CrossRefGoogle Scholar
  30. 30.
    Tateishi K, Tateishi U, Sato M et al (2013) Application of [62Cu]-diacetyl-bis(N4-methylthiosemicarbazone) PET imaging to predict highly malignant tumor grades and hypoxia-inducible factor 1a expression in patients with glioma. AJNR Am J Neuroradiol 34:92–99CrossRefGoogle Scholar
  31. 31.
    Barker FG 2nd, Chang SM, Huhn SL et al (1997) Age and the risk of anaplasia in magnetic resonance-nonenhancing supratentorial cerebral tumors. Cancer 80:936–941CrossRefGoogle Scholar
  32. 32.
    Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998PubMedGoogle Scholar
  33. 33.
    Pirotte BJ, Lubansu A, Massager N et al (2007) Results of positron emission tomography guidance and reassessment of the utility of and indications for stereotactic biopsy in children with infiltrative brainstem tumors. J Neurosurg 107:392–399CrossRefGoogle Scholar
  34. 34.
    Ling CC, Humm J, Larson S et al (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47:551–560CrossRefGoogle Scholar
  35. 35.
    Lee IH, Piert M, Gomez-Hassan D et al (2009) Association of 11C-methionine PET uptake with site of failure after concurrent temozolomide and radiation for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys 73:479–485CrossRefGoogle Scholar
  36. 36.
    Grosu AL, Weber WA, Franz M et al (2005) Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63:511–519CrossRefGoogle Scholar
  37. 37.
    Swanson KR, Chakraborty G, Wang CH et al (2009) Complementary but distinct roles for MRI and 18F-fluoromisonidazole PET in the assessment of human glioblastomas. J Nucl Med 50:36–44CrossRefGoogle Scholar
  38. 38.
    Brandsma D, Stalpers L, Taal W et al (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461CrossRefGoogle Scholar
  39. 39.
    Shah R, Vattoth S, Jacob R et al (2012) Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics 32:1343–1359CrossRefGoogle Scholar
  40. 40.
    Torrens M, Malamitsi J, Karaiskos P et al (2016) Although non diagnostic between necrosis and recurrence, FDG PET/CT assists management of brain tumors after radiosurgery. In Vivo 30:513–520PubMedGoogle Scholar
  41. 41.
    Rachinger W, Goetz C, Pöpperl G et al (2005) Positron emission tomography with O-(2-[18F]fluoroethyl)-L-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57:505–511. (discussion 505–511)CrossRefGoogle Scholar
  42. 42.
    Poulsen SH, Urup T, Grunnet K et al (2017) The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 44:373–381CrossRefGoogle Scholar
  43. 43.
    Suchorska B, Jansen NL, Linn J et al (2015) Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology 84:710–719CrossRefGoogle Scholar
  44. 44.
    Galldiks N, Rapp M, Stoffels G et al (2013) Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]Fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging 40:22–33CrossRefGoogle Scholar
  45. 45.
    Wardak M, Schiepers C, Dahlbom M et al (2011) Discriminant analysis of 18F-fluorothymidine kinetic parameters to predict survival in patients with recurrent high-grade glioma. Clin Cancer Res 17:6553–6562CrossRefGoogle Scholar
  46. 46.
    Chen W, Delaloye S, Silverman DH et al (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25:4714–4721CrossRefGoogle Scholar
  47. 47.
    Horky LL, Hsiao EM, Weiss SE et al (2011) Dual phase FDG-PET imaging of brain metastases provides superior assessment of recurrence versus post-treatment necrosis. J Neuro-Oncol 103:137–146CrossRefGoogle Scholar
  48. 48.
    Dittmann H, Dohmen BM, Paulsen F et al (2003) [18F]FLT PET for diagnosis and staging of thoracic tumours. Eur J Nucl Med Mol Imaging 30:1407–1412CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Julia V. Malamitsi
    • 1
  1. 1.Medical Physics, Medical SchoolUniversity of AthensAthensGreece

Personalised recommendations