Techniques for 3D-PIV

  • Markus Raffel
  • Christian E. Willert
  • Fulvio Scarano
  • Christian J. Kähler
  • Steven T. Wereley
  • Jürgen Kompenhans
Chapter

Abstract

This chapter initially provides the reader with an extensive survey of the many methods available to measure the flow velocity in three-dimensional problems. Afterwards, the chapter devotes three main sections to the most common or emerging methods: Tomographic PIV, 3D-PTV techniques and Shake-the-Box. Tomographic PIV is considered the technique of choice at present, and is extensively discussed. Aspects cover hardware components, requirements for illumination of a volume and techniques to increase particles visibility. A discussion is given of the effects of number of cameras and their configuration to deal with densely seeded experiments, where the phenomenon of ghost particles dominates the experimental errors. The theoretical background is given about the techniques used for tomographic reconstruction of 3D particle intensity distribution, followed by a critical evaluation of the accuracy of reconstruction. The discussion of Tomographic PIV closes with the description of the most recent algorithms based on multi-exposure reconstruction and time-resolved data analysis. The second part of the chapter is a new addition to the book and it deals with the fundamental principles of 3D-PTV. Particle detection, triangulation and pairing are the most important operations to perform a successful 3D-PTV evaluation. Hybrid methods based on tomographic reconstruction and individual particle tracking are discussed. The section concludes suggesting the working range of PTV techniques in 3D experiments. The Shake-the-Box technique is an emerging method that performs Lagrangian particle tracking with high potential in terms of computation speed and for the high accuracy of particle motion estimation. Its rapid diffusion among research laboratories justifies a detailed description of its working principles, main features and characteristic performance. The section elaborates on the concepts of Iterative Particle Reconstruction, Optical Transfer Function calibration and Data Assimilation to restore the results on a Cartesian mesh. Algorithms for image sequences as well as for four-frame recordings are detailed.

References

  1. 1.
    Adrian, R.J., Westerweel, J.: Particle Image Velocimetry. Cambridge Aerospace Series. Cambridge University Press, Cambridge (2011). URL http://www.cambridge.org/de/academic/subjects/engineering/thermal-fluids-engineering/particle-image-velocimetry
  2. 2.
    Atkinson, C., Soria, J.: An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp. Fluids 47(4), 553–568 (2009). DOI 10.1007/s00348-009-0728-0. URL http://dx.doi.org/10.1007/s00348-009-0728-0
  3. 3.
    Barnhart, D.H.: Whole-field holographic measurements of three-dimensional displacement in solid and fluid mechanics. Ph.D. thesis, Loughborough University, UK (2001)Google Scholar
  4. 4.
    Barnhart, D.H., Adrian, R.J., Papen, G.C.: Phase-conjugate holographic system for high-resolution particle-image velocimetry. Appl. Opt. 33(30), 7159–7170 (1994). DOI 10.1364/AO.33.007159. URL http://ao.osa.org/abstract.cfm?URI=ao-33-30-7159
  5. 5.
    Belden, J., Truscott, T.T., Axiak, M.C., Techet, A.H.: Three-dimensional synthetic aperture particle image velocimetry. Meas. Sci. Technol. 21(12), 125,403 (2010). DOI 10.1088/0957-0233/21/12/125403. URL http://stacks.iop.org/0957-0233/21/i=12/a=125403
  6. 6.
    Belden, J., Ravela, S., Truscott, T.T., Techet, A.H.: Three-dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet. Exp. Fluids 53(3), 839–861 (2012). DOI 10.1007/s00348-012-1322-4. URL http://dx.doi.org/10.1007/s00348-012-1322-4
  7. 7.
    Blinde, P., Lynch, K.P., Schrijer, F.F.J., van Oudheusden, B.: Determination of instantaneous pressure in a transonic base flow using four-pulse tomographic PIV, PIV15, September 14–16. Santa Barbara, California (2015)Google Scholar
  8. 8.
    Bomphrey, R.J., Henningsson, P., Michaelis, D., Hollis, D.: Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation. J. R. Soc. Interface 9(77), 3378–3386 (2012). DOI 10.1098/rsif.2012.0418. URL http://rsif.royalsocietypublishing.org/content/9/77/3378
  9. 9.
    Brevis, W., Niño, Y., Jirka, G.H.: Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry. Exp. Fluids 50(1), 135–147 (2011). DOI 10.1007/s00348-010-0907-z. URL http://dx.doi.org/10.1007/s00348-010-0907-z
  10. 10.
    Brücker, C.: 3-D scanning-particle-image-velocimetry: Technique and application to a spherical cap wake flow. Appl. Sci. Res. 56(2–3), 157–179 (1996). DOI 10.1007/BF02249379. URL http://dx.doi.org/10.1007/BF02249379
  11. 11.
    Brücker, C.: Spatial correlation analysis for 3-D scanning PIV: simulation and application of dual-color light-sheet scanning. In: 8th International Symposia on Applications of Laser Techniques to Fluid Mechanics, Lisbon (Portugal) (1996)Google Scholar
  12. 12.
    Brücker, C.: 3d scanning PIV applied to an air flow in a motored engine using digital high-speed video. Meas. Sci. Technol. 8(12), 1480 (1997). DOI 10.1088/0957-0233/8/12/011. URL http://stacks.iop.org/0957-0233/8/i=12/a=011
  13. 13.
    Brücker, C., Hess, D., Kitzhofer, J.: Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM). Meas. Sci. Technol. 24(2), 024,001 (2013). DOI 10.1088/0957-0233/24/2/024001. URL http://stacks.iop.org/0957-0233/24/i=2/a=024001
  14. 14.
    Caridi, G.C.A., Ragni, D., Sciacchitano, A., Scarano, F.: HFSB-seeding for large-scale tomographic PIV in wind tunnels. Exp. Fluids 57(12), 190 (2016). DOI 10.1007/s00348-016-2277-7. URL http://dx.doi.org/10.1007/s00348-016-2277-7
  15. 15.
    Choi, W., Guezennec, Y., Jung, I.: Rapid evaluation of variable valve lift strategies using 3-D in-cylinder flow measurements. In: SAE 1996 Transactions - Journal of Engines, vol. 105-3, p. 960951. SAE (1996). DOI 10.4271/960951. URL http://papers.sae.org/960951/ (SAE Technical Paper 960951)
  16. 16.
    Cierpka, C., Segura, R., Hain, R., Kähler, C.J.: A simple single camera 3C3D velocity measurement technique without errors due to depth of correlation and spatial averaging for microfluidics. Meas. Sci. Technol. 21(4), 045,401 (2010). DOI 10.1088/0957-0233/21/4/045401. URL http://stacks.iop.org/0957-0233/21/i=4/a=045401
  17. 17.
    Cierpka, C., Lütke, B., Kähler, C.J.: Higher order multi-frame particle tracking velocimetry. Exp. Fluids 54(5), 1533 (2013). DOI 10.1007/s00348-013-1533-3. URL http://dx.doi.org/10.1007/s00348-013-1533-3
  18. 18.
    Discetti, S., Astarita, T.: Fast 3D PIV with direct sparse cross-correlations. Exp. Fluids 53(5), 1437–1451 (2012). DOI 10.1007/s00348-012-1370-9. URL http://dx.doi.org/10.1007/s00348-012-1370-9
  19. 19.
    Discetti, S., Astarita, T.: A fast multi-resolution approach to tomographic PIV. Exp. Fluids 52(3), 765–777 (2012). DOI 10.1007/s00348-011-1119-x. URL http://dx.doi.org/10.1007/s00348-011-1119-x
  20. 20.
    Elsinga, G.E., Scarano, F., Wieneke, B., van Oudheusden, B.W.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006). DOI 10.1007/s00348-006-0212-z. URL http://dx.doi.org/10.1007/s00348-006-0212-z
  21. 21.
    Elsinga, G.E., Westerweel, J., Scarano, F., Novara, M.: On the velocity of ghost particles and the bias errors in tomographic-PIV. Exp. Fluids 50(4), 825–838 (2011). DOI 10.1007/s00348-010-0930-0. URL http://dx.doi.org/10.1007/s00348-010-0930-0
  22. 22.
    Elsinga, G.E., Tokgoz, S.: Ghost hunting–an assessment of ghost particle detection and removal methods for tomographic-PIV. Meas. Sci. Technol. 25(8), 084,004 (2014). DOI 10.1088/0957-0233/25/8/084004. URL http://stacks.iop.org/0957-0233/25/i=8/a=084004
  23. 23.
    Fuchs, T., Hain, R., Kähler, C.J.: Three-dimensional location of micrometer-sized particles in macroscopic domains using astigmatic aberrations. Opt. Lett. 39(5), 1298–1301 (2014). DOI 10.1364/OL.39.001298. URL http://ol.osa.org/abstract.cfm?URI=ol-39-5-1298
  24. 24.
    Fuchs, T., Hain, R., Kähler, C.J.: Double-frame 3D-PTV using a tomographic predictor. Exp. Fluids 57(11), 174 (2016). DOI 10.1007/s00348-016-2247-0. URL http://dx.doi.org/10.1007/s00348-016-2247-0
  25. 25.
    Fuchs, T., Hain, R., Kähler, C.J.: In situ calibrated defocusing PTV for wall-bounded measurement volumes. Meas. Sci. Technol. 27(8), 084,005 (2016). DOI 10.1088/0957-0233/27/8/084005. URL http://stacks.iop.org/0957-0233/27/i=8/a=084005
  26. 26.
    Fuchs, T., Hain, R., Kähler, C.J.: Uncertainty quantification of three-dimensional velocimetry techniques for small measurement depths. Exp. Fluids 57(5), 73 (2016). DOI 10.1007/s00348-016-2161-5. URL http://dx.doi.org/10.1007/s00348-016-2161-5
  27. 27.
    Fuchs, T., Hain, R., Kähler, C.J.: Non-iterative double-frame 2D/3D particle tracking velocimetry. Exp. Fluids 58(119) (2017). DOI 10.1007/s00348-017-2404-0. URL  https://doi.org/10.1007/s00348-017-2404-0
  28. 28.
    Fukuchi, Y.: Influence of number of cameras and preprocessing for thick volume tomographic PIV. In: 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 09–12 July (2012). URL http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2012/upload/153_paper_zxsdxt.pdf
  29. 29.
    Geisler, R., Novara, M., Schröder, A.: Volumetric multi-pulse particle tracking measurement for separated laminar transitional flow investigations. In: 18th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 4–7 July 2016, Lisbon, Portugal (2016)Google Scholar
  30. 30.
    Gesemann, S., Huhn, F., Schanz, D., Schröder, A.: From noisy particle tracks to velocity, acceleration and pressure fields using B-splines and penalties. In: 18th International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal (2016). URL http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2016/finalworks2016/papers/04.5_4_186paper.pdf
  31. 31.
    Ghaemi, S., Scarano, F.: Multi-pass light amplification for tomographic particle image velocimetry applications. Meas. Sci. Technol. 21(12), 127,002 (2010). DOI 10.1088/0957-0233/21/12/127002. URL http://stacks.iop.org/0957-0233/21/i=12/a=127002
  32. 32.
    Ghaemi, S., Scarano, F.: Counter-hairpin vortices in the turbulent wake of a sharp trailing edge. J. Fluid Mech. 689, 317–356 (2011). DOI 10.1017/jfm.2011.431. URL http://dx.doi.org/10.1017/jfm.2011.431
  33. 33.
    Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3), 471–481 (1970). DOI 10.1016/0022-5193(70)90109-8. URL http://www.sciencedirect.com/science/article/pii/0022519370901098
  34. 34.
    Hartley, R.I., Sturm, P.: Triangulation. Comput. Vis. Image Underst. 68(2), 146–157 (1997). DOI 10.1006/cviu.1997.0547. URL http://www.sciencedirect.com/science/article/pii/S1077314297905476
  35. 35.
    Herman, G.T., Lent, A.: Iterative reconstruction algorithms. Comput. Biol. Med. 6(4), 273–294 (1976). DOI 10.1016/0010-4825(76)90066-4. URL http://dx.doi.org/10.1016/0010-4825(76)90066-4
  36. 36.
    Herrmann, S.F., Hinsch, K.D.: Light-in-flight holographic particle image velocimetry for wind-tunnel applications. Meas. Sci. Technol. 15(4), 613 (2004). DOI 10.1088/0957-0233/15/4/002. URL http://stacks.iop.org/0957-0233/15/i=4/a=002
  37. 37.
    Hinsch, K.D.: Holographic particle image velocimetry. Meas. Sci. Technol. 13(7), R61 (2002). DOI 10.1088/0957-0233/13/7/201. URL http://dx.doi.org/10.1088/0957-0233/13/7/201
  38. 38.
    Hu, H., Saga, T., Kobayashi, T., Taniguchi, N., Yasuki, M.: Dual-plane stereoscopic particle image velocimetry: system set-up and its application on a lobed jet mixing flow. Exp. Fluids 31(3), 277–293 (2001). DOI 10.1007/s003480100283. URL http://dx.doi.org/10.1007/s003480100283
  39. 39.
    Huhn, F., Schanz, D., Gesemann, S., Dierksheide, U., van de Meerendonk, R., Schröder, A.: Large-scale volumetric flow measurement in a pure thermal plume by dense tracking of helium-filled soap bubbles, Exp. Fluids 58, 116 (2017). URL  https://doi.org/10.1007/s00348-017-2390-2
  40. 40.
    Jahn, T.: Volumetric flow field measurement: an implementation of Shake-The-Box. Master Thesis, DLR Göttingen & Georg-August-Universität Göttingen, Germany (2017)Google Scholar
  41. 41.
    Kähler, C.J.: Multiplane stereo PIV - recording and evaluation methods. In: EUROMECH 411: application of PIV to turbulence measurements, University of Rouen (France) (2000)Google Scholar
  42. 42.
    Kähler, C.J.: Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo PIV. Exp. Fluids 36(1), 114–130 (2004). DOI 10.1007/s00348-003-0680-3. URL http://dx.doi.org/10.1007/s00348-003-0680-3
  43. 43.
    Kähler, C.J., Kompenhans, J.: Multiple plane stereo PIV – technical realization and fluid-mechanical significance. In: 3rd International Workshop on PIV, Santa Barbara (USA) (1999)Google Scholar
  44. 44.
    Kähler, C.J., Kompenhans, J.: Fundamentals of multiple plane stereo particle image velocimetry. Exp. Fluids 29(1), S070–S077 (2000). DOI 10.1007/s003480070009. URL http://dx.doi.org/10.1007/s003480070009
  45. 45.
    Kähler, C.J., Stanislas, M., Dewhirst, T., Carlier, J.: Investigation of the spatio-temporal flow structure in the log-law region of a turbulent boundary layer by means of multi-plane stereo particle image velocimetry. In: Laser Techniques for Fluid Mechanics, pp. 39–53. Springer, Berlin (2002). DOI 10.1007/978-3-662-08263-8_3. URL  https://doi.org/10.1007/978-3-662-08263-8_3
  46. 46.
    Kähler, C.J., Scholz, U., Ortmanns, J.: Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp. Fluids 41(2), 327–341 (2006). DOI 10.1007/s00348-006-0167-0. URL http://dx.doi.org/10.1007/s00348-006-0167-0
  47. 47.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the resolution limit of digital particle image velocimetry. Exp. Fluids 52(6), 1629–1639 (2012). DOI 10.1007/s00348-012-1280-x. URL http://dx.doi.org/10.1007/s00348-012-1280-x
  48. 48.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52(6), 1641–1656 (2012). DOI 10.1007/s00348-012-1307-3. URL http://dx.doi.org/10.1007/s00348-012-1307-3
  49. 49.
    Kähler, C.J., Astarita, T., Vlachos, P.P., Sakakibara, J., Hain, R., Discetti, S., Foy, R., Cierpka, C.: Main results of the 4th international piv challenge. Exp. Fluids 57(6), 1–71 (2016). DOI 10.1007/s00348-016-2173-1. URL http://dx.doi.org/10.1007/s00348-016-2173-1
  50. 50.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)CrossRefGoogle Scholar
  51. 51.
    Katz, J., Sheng, J.: Applications of holography in fluid mechanics and particle dynamics. Annu. Rev. Fluid Mech. 42(1), 531–555 (2010). DOI 10.1146/annurev-fluid-121108-145508. URL http://dx.doi.org/10.1146/annurev-fluid-121108-145508
  52. 52.
    Keane, R.D., Adrian, R.J.: Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49(3), 191–215 (1992). DOI 10.1007/BF00384623. URL http://dx.doi.org/10.1007/BF00384623
  53. 53.
    Konrath, R., Schröder, W., Limberg, W.: Holographic particle image velocimetry applied to the flow within the cylinder of a four-valve internal combustion engine. Exp. Fluids 33(6), 781–793 (2002). DOI 10.1007/s00348-002-0495-7. URL http://dx.doi.org/10.1007/s00348-002-0495-7
  54. 54.
    Lei, Y.C., Tien, W.H., Duncan, J., Paul, M., Ponchaut, N., Mouton, C., Dabiri, D., Rösgen, T., Hove, J.: A vision-based hybrid particle tracking velocimetry (PTV) technique using a modified cascade correlation peak-finding method. Exp. Fluids 53(5), 1251–1268 (2012). DOI 10.1007/s00348-012-1357-6. URL http://dx.doi.org/10.1007/s00348-012-1357-6
  55. 55.
    Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A., Eyink, G.: A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9(31), 1–29 (2008). DOI 10.1080/14685240802376389. URL http://dx.doi.org/10.1080/14685240802376389
  56. 56.
    Lüthi, B., Tsinober, A., Kinzelbach, W.: Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech. 528, 87–118 (2005). DOI 10.1017/S0022112004003283. URL http://dx.doi.org/10.1017/S0022112004003283
  57. 57.
    Lynch, K.P., Scarano, F.: Experimental determination of tomographic PIV accuracy by a 12-camera system. Meas. Sci. Technol. 25(8), 084,003 (2014). DOI 10.1088/0957-0233/25/8/084003. URL http://stacks.iop.org/0957-0233/25/i=8/a=084003
  58. 58.
    Lynch, K.P., Scarano, F.: Material acceleration estimation by four-pulse tomo-PIV. Meas. Sci. Technol. 25(8), 084005 (2014). DOI 10.1088/0957-0233/25/8/084005. URL http://stacks.iop.org/0957-0233/25/i=8/a=084005
  59. 59.
    Lynch, K.P., Scarano, F.: An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV. Exp. Fluids 56(3), 66 (2015). DOI 10.1007/s00348-015-1934-6. URL http://dx.doi.org/10.1007/s00348-015-1934-6
  60. 60.
    Maas, H.G., Gruen, A., Papantoniou, D.: Particle tracking velocimetry in three-dimensional flows. Exp. Fluids 15(2), 133–146 (1993). DOI 10.1007/BF00190953. URL http://dx.doi.org/10.1007/BF00190953
  61. 61.
    Malek, M., Allano, D., Coötmellec, S., Özkul, C., Lebrun, D.: Digital in-line holography for three-dimensional-two-components particle tracking velocimetry. Meas. Sci. Technol. 15(4), 699 (2004). DOI 10.1088/0957-0233/15/4/012. URL http://stacks.iop.org/0957-0233/15/i=4/a=012
  62. 62.
    Malik, N.A., Dracos, T., Papantoniou, D.A.: Particle tracking velocimetry in three-dimensional flows. Exp. Fluids 15(4), 279–294 (1993). DOI 10.1007/BF00223406. URL http://dx.doi.org/10.1007/BF00223406
  63. 63.
    Meng, H., Pan, G., Pu, Y., Woodward, S.H.: Holographic particle image velocimetry: from film to digital recording. Meas. Sci. Technol. 15(4), 673 (2004). DOI 10.1088/0957-0233/15/4/009. URL http://stacks.iop.org/0957-0233/15/i=4/a=009
  64. 64.
    Michaelis, D., Novara, M., Scarano, F., Wieneke, B.: Comparison of volume reconstruction techniques at different particle densities. In: 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal (2010). URL http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2010/upload/1708_toytpv_3.10.5.Full_1708.pdf
  65. 65.
    Mikheev, A.V., Zubtsov, V.M.: Enhanced particle-tracking velocimetry (EPTV) with a combined two-component pair-matching algorithm. Meas. Sci. Technol. 19(8), 085,401 (2008). DOI 10.1088/0957-0233/19/8/085401. URL http://stacks.iop.org/0957-0233/19/i=8/a=085401
  66. 66.
    Mullin, J.A., Dahm, W.J.A.: Highly-resolved three-dimensional velocity measurements via dual-plane stereo particle image velocimetry (DSPIV) in turbulent flows (2002). DOI 10.2514/6.2002-290. URL  https://doi.org/10.2514/6.2002-290
  67. 67.
    Mullin, J.A., Dahm, W.J.A.: Dual-plane stereo particle image velocimetry (DSPIV) for measuring velocity gradient fields at intermediate and small scales of turbulent flows. Exp. Fluids 38(2), 185–196 (2005). DOI 10.1007/s00348-004-0898-8. URL http://dx.doi.org/10.1007/s00348-004-0898-8
  68. 68.
    Mullin, J.A., Dahm, W.J.A.: Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. i. accuracy assessments. Phys. Fluids 18(3), 035,101 (2006). DOI 10.1063/1.2166447. URL  https://doi.org/10.1063/1.2166447
  69. 69.
    Mullin, J.A., Dahm, W.J.A.: Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. ii. experimental results. Phys. Fluids 18(3), 035,102 (2006). DOI 10.1063/1.2166448. URL  https://doi.org/10.1063/1.2166448
  70. 70.
    Nishino, K., Kasagi, N., Hirata, M.: Three-dimensional particle tracking velocimetry based on automated digital image processing. J. Fluids Eng. 111(4), 384–391 (1989). DOI 10.1115/1.3243657. URL http://dx.doi.org/10.1115/1.3243657
  71. 71.
    Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35(151), 773–782 (1980). URL http://www.ams.org/journals/mcom/1980-35-151/S0025-5718-1980-0572855-7/S0025-5718-1980-0572855-7.pdf
  72. 72.
    Novara, M., Batenburg, K.J., Scarano, F.: Motion tracking-enhanced MART for tomographic PIV. Meas. Sci. Technol. 21(3), 035,401 (2010). DOI 10.1088/0957-0233/21/3/035401. URL http://stacks.iop.org/0957-0233/21/i=3/a=035401
  73. 73.
    Novara, M., Scarano, F.: Performances of motion tracking enhanced Tomo-PIV on turbulent shear flow. Exp. Fluids 52(4), 1027–1041 (2012)CrossRefGoogle Scholar
  74. 74.
    Novara, M., Scarano, F.: A particle-tracking approach for accurate material derivative measurements with tomographic PIV. Exp. Fluids 54(8), 1584 (2013)CrossRefGoogle Scholar
  75. 75.
    Novara, M., Schanz, D., Reuther, N., Kähler, C.J., Schröder, A.: Lagrangian 3D particle tracking in high-speed flows: Shake-The-Box for multi-pulse systems. Exp. Fluids 57, 128 (2016a)CrossRefGoogle Scholar
  76. 76.
    Novara, M., Schanz, D., Gesemann, S., Lynch, K.P., Schröder, A.: Lagrangian 3D particle tracking for multi-pulse systems: performance assessment and application of Shake-The-Box, In: 18th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 4–7 July 2016, Lisbon, Portugal (2016b)Google Scholar
  77. 77.
    Ohmi, K., Li, H.Y.: Particle-tracking velocimetry with new algorithms. Meas. Sci. Technol. 11(6), 603 (2000). DOI 10.1088/0957-0233/11/6/303. URL http://stacks.iop.org/0957-0233/11/i=6/a=303
  78. 78.
    Okamoto, K., Nishio, S., Saga, T., Kobayashi, T.: Standard images for particle-image velocimetry. Meas. Sci. Technol. 11(6), 685 (2000). DOI 10.1088/0957-0233/11/6/311. URL http://stacks.iop.org/0957-0233/11/i=6/a=311
  79. 79.
    Percin, M., Hu, Y., van Oudheusden, B.W., Remes, B., Scarano, F.: Wing flexibility effects in clap-and-fling. Int. J. Micro Air Veh. 3(4), 217–227 (2011). DOI 10.1260/1756-8293.3.4.217. URL http://dx.doi.org/10.1260/1756-8293.3.4.217
  80. 80.
    Pereira, F., Stüer, H., Graff, E.C., Gharib, M.: Two-frame 3D particle tracking. Meas. Sci. Technol. 17(7), 1680 (2006). DOI 10.1088/0957-0233/17/7/006. URL http://stacks.iop.org/0957-0233/17/i=7/a=006
  81. 81.
    Prasad, A.K.: Stereoscopic particle image velocimetry. Exp. Fluids 29(2), 103–116 (2000). DOI 10.1007/s003480000143. URL http://dx.doi.org/10.1007/s003480000143
  82. 82.
    Pu, Y., Meng, H.: An advanced off-axis holographic particle image velocimetry (HPIV) system. Exp. Fluids 29(2), 184–197 (2000). DOI 10.1007/s003489900088. URL http://dx.doi.org/10.1007/s003489900088
  83. 83.
    Rochlitz, H., Scholz, P., Fuchs, T.: The flow field in a high aspect ratio cooling duct with and without one heated wall. Exp. Fluids 56(12), 208 (2015). DOI 10.1007/s00348-015-2071-y. URL http://dx.doi.org/10.1007/s00348-015-2071-y
  84. 84.
    Scarano,F. : Tomographic PIV: principles and practice. Meas. Sci. Technol. 24(1) (2012) DOI 10.1088/0957-0233/24/1/012001. URL http://doi.org/10.1088/0957-0233/24/1/012001
  85. 85.
    Scarano, F., Poelma, C.: Three-dimensional vorticity patterns of cylinder wakes. Exp. Fluids 47(1), 69 (2009). DOI 10.1007/s00348-009-0629-2. URL http://dx.doi.org/10.1007/s00348-009-0629-2
  86. 86.
    Scarano, F., Riethmuller, M.L.: Advances in iterative multigrid PIV image processing. Exp. Fluids 29(1), S051–S060 (2000). DOI 10.1007/s003480070007. URL http://dx.doi.org/10.1007/s003480070007
  87. 87.
    Scarano, F., David, L., Bsibsi, M., Calluaud, D.: S-PIV comparative assessment: image dewarping + misalignment correction and pinhole + geometric back projection. Exp. Fluids 39(2), 257–266 (2005). DOI 10.1007/s00348-005-1000-x. URL http://dx.doi.org/10.1007/s00348-005-1000-x
  88. 88.
    Schanz, D., Gesemann, S., Schröder, A., Wieneke, B., Novara, M.: Non-uniform optical transfer functions in particle imaging: calibration and application to tomographic reconstruction. Meas. Sci. Technol. 24(2) (2013). DOI 10.1088/0957-0233/24/2/024009. URL http://stacks.iop.org/0957-0233/24/i=2/a=024009
  89. 89.
    Schanz, D., Schröder, A., Gesemann, S., Michaelis, D., Wieneke, B.: ‘Shake The Box’: a highly efficient and accurate tomographic particle tracking velocimetry (tomo-PTV) method using prediction of particle positions. In: PIV13; 10th International Symposium on Particle Image Velocimetry, Delft, The Netherlands, July 1–3, 2013. Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, and Faculty of Aerospace Engineering (2013). URL http://repository.tudelft.nl/islandora/object/uuid:212b0c2d-3210-482f-b751-91d98d5ea43d/?collection=research
  90. 90.
    Schanz, D., Gesemann, S., Schröder, A.: Shake-The-Box: Lagrangian particle tracking at high particle image densities. Exp. Fluids 57(5), 1–27 (2016). DOI 10.1007/s00348-016-2157-1. URL http://dx.doi.org/10.1007/s00348-016-2157-1
  91. 91.
    Schneiders, J.F.G., Scarano, F.: Dense velocity reconstruction from tomographic PTV with material derivatives. Exp. Fluids 57(9), 139 (2016). DOI 10.1007/s00348-016-2225-6. URL http://dx.doi.org/10.1007/s00348-016-2225-6
  92. 92.
    Schosser, C., Fuchs, T., Hain, R., Kähler, C.J.: Non-intrusive calibration for three-dimensional particle imaging. Exp. Fluids 57(5), 69 (2016). DOI 10.1007/s00348-016-2167-z. URL http://dx.doi.org/10.1007/s00348-016-2167-z
  93. 93.
    Schrijer, F.F.J., Scarano, F.: Effect of predictor-corrector filtering on the stability and spatial resolution of iterative PIV interrogation. Exp. Fluids 45(5), 927–941 (2008). DOI 10.1007/s00348-008-0511-7. URL http://dx.doi.org/10.1007/s00348-008-0511-7
  94. 94.
    Schröder, A., Geisler, R., Elsinga, G.E., Scarano, F., Dierksheide, U.: Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV. Exp. Fluids 44(2), 305–316 (2008). DOI 10.1007/s00348-007-0403-2. URL http://dx.doi.org/10.1007/s00348-007-0403-2
  95. 95.
    Schröder, A., Geisler, R., Staack, K., Elsinga, G.E., Scarano, F., Wieneke, B., Henning, A., Poelma, C., Westerweel, J.: Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV. Exp. Fluids 50(4), 1071–1091 (2011). DOI 10.1007/s00348-010-1014-x. URL http://dx.doi.org/10.1007/s00348-010-1014-x
  96. 96.
    Schröder, A., Schanz, D., Geisler, R., Willert, C., Michaelis, D.: Dual-volume and four-pulse Tomo-PIV using polarized light, 10th Symp PIV. Delft, The Netherland (2013)Google Scholar
  97. 97.
    Schröder, A., Schanz, D., Michaelis, D., Cierpka, C., Scharnowski, S., Kähler, C.J.: Advances of PIV and 4D-PTV ‘Shake-The-Box’ for turbulent flow analysis - the flow over periodic hills. Flow Turbul. Combust. 95(2), 193–209 (2015). DOI 10.1007/s10494-015-9616-2. URL http://dx.doi.org/10.1007/s10494-015-9616-2
  98. 98.
    Sciacchitano, A., Scarano, F.: Elimination of PIV light reflections via a temporal high pass filter. Meas. Sci. Technol. 25(8), 084,009 (2014). DOI 10.1088/0957-0233/25/8/084009. URL http://stacks.iop.org/0957-0233/25/i=8/a=084009
  99. 99.
    Sciacchitano, A., Scarano, F., Wieneke, B.: Multi-frame pyramid correlation for time-resolved PIV. Exp. Fluids 53(4), 1087–1105 (2012). DOI 10.1007/s00348-012-1345-x. URL http://dx.doi.org/10.1007/s00348-012-1345-x
  100. 100.
    Soria, J., Atkinson, C.: Towards 3C-3D digital holographic fluid velocity vector field measurement–tomographic digital holographic piv (tomo-hpiv). Meas. Sci. Technol. 19(7), 074,002 (2008). DOI 10.1088/0957-0233/19/7/074002. URL http://stacks.iop.org/0957-0233/19/i=7/a=074002
  101. 101.
    Svizher, A., Cohen, J.: Holographic particle image velocimetry system for measurements of hairpin vortices in air channel flow. Exp. Fluids 40(5), 708–722 (2006). DOI 10.1007/s00348-006-0108-y. URL http://dx.doi.org/10.1007/s00348-006-0108-y
  102. 102.
    Thomas, L., Tremblais, B., David, L.: Optimization of the volume reconstruction for classical tomo-PIV algorithms (MART, BIMART and SMART): synthetic and experimental studies. Meas. Sci. Technol. 25(3), 035,303 (2014). DOI 10.1088/0957-0233/25/3/035303. URL http://stacks.iop.org/0957-0233/25/i=3/a=035303
  103. 103.
    van Doorne, C.W.H., Westerweel, J.: Measurement of laminar, transitional and turbulent pipe flow using stereoscopic-PIV. Exp. Fluids 42(2), 259–279 (2007). DOI 10.1007/s00348-006-0235-5. URL http://dx.doi.org/10.1007/s00348-006-0235-5
  104. 104.
    van Gent, P.L., Michaelis, D., van Oudheusden, B.W., Weiss, P.É., de Kat, R., Laskari, A., Jeon, Y.J., David, L., Schanz, D., Huhn, F., Gesemann, S., Novara, M., McPhaden, C., Neeteson, N.J., Rival, D.E., Schneiders, J.F.G., Schrijer, F.F.J.: Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking. Exp. Fluids 58(4), 33 (2017). DOI 10.1007/s00348-017-2324-z. URL http://dx.doi.org/10.1007/s00348-017-2324-z
  105. 105.
    Violato, D., Scarano, F.: Three-dimensional evolution of flow structures in transitional circular and chevron jets. Phys. Fluids 23(12), 124,104 (2011). DOI 10.1063/1.3665141. URL  https://doi.org/10.1063/1.3665141
  106. 106.
    Virant, M., Dracos, T.: Establishment of a videogrammetric PTV system. In: Dracos, T. (ed.) Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques. ERCOFTAC Series, vol. 4, pp. 229–254. Springer, Netherlands (1996). DOI 10.1007/978-94-015-8727-3_11. URL  https://doi.org/10.1007/978-94-015-8727-3_11
  107. 107.
    Watanabe, Y., Hideshima, Y., Shigematsu, T., Takehara, K.: Application of three-dimensional hybrid stereoscopic particle image velocimetry to breaking waves. Meas. Sci. Technol. 17(6), 1456 (2006). DOI 10.1088/0957-0233/17/6/025. URL http://stacks.iop.org/0957-0233/17/i=6/a=025
  108. 108.
    Wereley, S.T., Meinhart, C.D.: Second-order accurate particle image velocimetry. Exp. Fluids 31(3), 258–268 (2001). DOI 10.1007/s003480100281. URL http://dx.doi.org/10.1007/s003480100281
  109. 109.
    Westerweel, J.: On velocity gradients in PIV interrogation. Exp. Fluids 44(5), 831–842 (2008). DOI 10.1007/s00348-007-0439-3. URL http://dx.doi.org/10.1007/s00348-007-0439-3
  110. 110.
    Wieneke, B.: Stereo-PIV using self-calibration on particle images. Exp. Fluids 39(2), 267–280 (2005). DOI 10.1007/s00348-005-0962-z. URL http://dx.doi.org/10.1007/s00348-005-0962-z
  111. 111.
    Wieneke, B.: Volume self-calibration for 3D particle image velocimetry. Exp. Fluids 45(4), 549–556 (2008). DOI 10.1007/s00348-008-0521-5. URL http://dx.doi.org/10.1007/s00348-008-0521-5
  112. 112.
    Wieneke, B.: Iterative reconstruction of volumetric particle distribution. Meas. Sci. Technol. 24(2) (2013). DOI 10.1088/0957-0233/24/2/024008. URL http://stacks.iop.org/0957-0233/24/i=2/a=024008
  113. 113.
    Wiener, N.: Extrapolation, Interpolation, and Smoothing of Stationary Time Series, vol. 2. MIT Press Cambridge, Cambridge (1949)MATHGoogle Scholar
  114. 114.
    Willert, C.E.: Stereoscopic digital particle image velocimetry for application in wind-tunnel flows. Meas. Sci. Technol. 8, 1465–1479 (1997). DOI 10.1088/0957-0233/8/12/010. URL http://stacks.iop.org/0957-0233/8/i=12/a=010
  115. 115.
    Willert, C.E., Gharib, M.: Three-dimensional particle imaging with a single camera. Exp. Fluids 12(6), 353–358 (1992). DOI 10.1007/BF00193880. URL http://dx.doi.org/10.1007/BF00193880
  116. 116.
    Willert, C.E., Stasicki, B., Klinner, J., Moessner, S.: Pulsed operation of high-power light emitting diodes for imaging flow velocimetry. Meas. Sci. Technol. 21(7), 075402 (2010). DOI 10.1088/0957-0233/21/7/075402. URL http://dx.doi.org/10.1088/0957-0233/21/7/075402
  117. 117.
    Worth, N.A., Nickels, T.B.: Acceleration of tomo-piv by estimating the initial volume intensity distribution. Exp. Fluids 45(5), 847 (2008). DOI 10.1007/s00348-008-0504-6. URL http://dx.doi.org/10.1007/s00348-008-0504-6
  118. 118.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000). DOI 10.1109/34.888718. URL http://dx.doi.org/10.1109/34.888718

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Markus Raffel
    • 1
  • Christian E. Willert
    • 2
  • Fulvio Scarano
    • 3
  • Christian J. Kähler
    • 4
  • Steven T. Wereley
    • 5
  • Jürgen Kompenhans
    • 1
  1. 1. Institut für Aerodynamik und StrömungstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)GöttingenGermany
  2. 2. Institut für AntriebstechnikDeutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)KölnGermany
  3. 3.Department of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Institut für Strömungsmechanik und AerodynamikUniversität der Bundeswehr MünchenNeubibergGermany
  5. 5.Department of Mechanical Engineering, Birck Nanotech CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations