Forecasting Analytics

  • Konstantinos I. NikolopoulosEmail author
  • Dimitrios D. Thomakos
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 264)


Of course, there is no accurate forecast, but at times this shifts the focus for ... If there is no perfect plan, is there such thing as a good enough plan? …

Supplementary material

428412_1_En_12_MOESM1_ESM.csv (0 kb)
Supplementary Data 12.1 Data—ARIMA (CSV 382 bytes)
428412_1_En_12_MOESM2_ESM.csv (0 kb)
Supplementary Data 12.2 Data—Croston and SBA (CSV 92 bytes)
428412_1_En_12_MOESM3_ESM.csv (0 kb)
Supplementary Data 12.3 Data—Damped Holt (CSV 121 bytes)
428412_1_En_12_MOESM4_ESM.csv (0 kb)
Supplementary Data 12.4 Data—SES, ARRSES, Holt, HoltWinter (CSV 440 bytes)
428412_1_En_12_MOESM5_ESM.csv (0 kb)
Supplementary Data 12.5 Data—Theta (CSV 241 bytes)
428412_1_En_12_MOESM6_ESM.xlsx (64 kb)
Supplementary Data 12.6 FA—Excel Template (XLSX 64 kb)
Supplementary Data 12.7 Forecasting Analytics (R 2 kb)
428412_1_En_12_MOESM8_ESM.xlsx (27 kb)
Supplementary Data 12.8 Forecasting chapter—Consolidated Output v1.0 2017-11-21 (XLSX 27 kb)


  1. Andrawis, R. R., Atiya, A. F., & El-Shishiny, H. (2011). Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition. International Journal of Forecasting, 27, 672–688.CrossRefGoogle Scholar
  2. Armstrong, J. S. (2001). Principles of forecasting: A handbook for researchers and practitioners. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  3. Assimakopoulos, V., & Nikolopoulos, K. (2000). The theta model: A decomposition approach to forecasting. International Journal of Forecasting, 16, 521–530.CrossRefGoogle Scholar
  4. Babai, M. Z., Ali, M., & Nikolopoulos, K. (2012). Impact of temporal aggregation on stock control performance of intermittent demand estimators: Empirical analysis. OMEGA: The International Journal of Management Science, 40, 713–721.CrossRefGoogle Scholar
  5. Bollerslev, T., Engle, R. F., & Nelson, D. B. (1994). ARCH models. In R. F. Engle & D. L. McFadden (Eds.), Handbook of econometrics (Vol. 4, pp. 2959–3038). Amsterdam: North-Holland.Google Scholar
  6. Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. San Francisco, Holden Day (revised ed. 1976).Google Scholar
  7. Bozos, K., Nikolopoulos, K., & Bougioukos, N. (2008). Forecasting the value effect of seasoned equity offering announcements. In 28th international symposium on forecasting ISF 2008, June 22–25 2008. France: Nice.Google Scholar
  8. Brown, R. G. (1956). Exponential smoothing for predicting demand. Cambridge, MA: Arthur D. Little Inc.Google Scholar
  9. Chatfield, C. (2005). Time-series forecasting. Significance, 2(3), 131–133.CrossRefGoogle Scholar
  10. Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Operational Research Quarterly, 23, 289–303.CrossRefGoogle Scholar
  11. Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7, 126.CrossRefGoogle Scholar
  12. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of the United Kingdom inflation. Econometrica, 50, 987–1008.CrossRefGoogle Scholar
  13. Goodwin, P. (2006). Decision Analysis for Management Judgement, 3rd Edition Chichester: Wiley.Google Scholar
  14. Hanke, J. E., & Wichern, D. W. (2005). Business forecasting (8th ed.). Upper Saddle River: Pearson.Google Scholar
  15. Harrison, P. J., & Stevens, C. F. (1976). Bayesian forecasting. Journal of the Royal Statistical Society (B), 38, 205–247.Google Scholar
  16. Hibon, M., & Makridakis, S. (2000). The M3 competition: Results, conclusions and implications. International Journal of Forecasting, 16, 451–476.CrossRefGoogle Scholar
  17. Holt, C. C. (1957). Forecasting seasonals and trends by exponentially weighted averages. O. N. R. Memorandum 52/1957. Pittsburgh: Carnegie Institute of Technology. Reprinted with discussion in 2004. International Journal of Forecasting, 20, 5–13.CrossRefGoogle Scholar
  18. Hyndman, R. J. (2014). Forecasting – Principle and practices. University of Western Australia. Retrieved July 24, 2017, from
  19. Johnston, F. R., Boylan, J. E., & Shale, E. A. (2003). An examination of the size of orders from customers, their characterization and the implications for inventory control of slow moving items. Journal of the Operational Research Society, 54(8), 833–837.CrossRefGoogle Scholar
  20. Jose, V. R. R., & Winkler, R. L. (2008). Simple robust averages of forecasts: Some empirical results. International Journal of Forecasting, 24(1), 163–169.Google Scholar
  21. Keast, S., & Towler, M. (2009). Rational decision-making for managers: An introduction. Hoboken, NJ: John Wiley & Sons.Google Scholar
  22. Kourentzes, N. (2014). Improving your forecast using multiple temporal aggregation. Retrieved August 7, 2017, from
  23. Kourentzes, N., Petropoulos, F., & Trapero, J. R. (2014). Improving forecasting by estimating time series structural components across multiple frequencies. International Journal of Forecasting, 30, 291–302.CrossRefGoogle Scholar
  24. Leven and Segerstedt. (2004). Referred to in Syntetos and Boylan approximation section.Google Scholar
  25. Lindsey, M., & Pavur, R. (2008). A comparison of methods for forecasting intermittent demand with increasing or decreasing probability of demand occurrences. In K. D. Lawrence & M. D. Geurts (Eds.), Advances in business and management forecasting (advances in business and management forecasting) (Vol. 5, pp. 115–132). Bingley, UK: Emerald Group Publishing Limited.CrossRefGoogle Scholar
  26. Makridakis, S., Hogarth, R., & Gaba, A. (2009). Dance with chance: Making luck work for you. London, UK: Oneworld Publications.Google Scholar
  27. Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (1998). Forecasting: Methods and applications (3rd ed.). New York: John Wiley and Sons.Google Scholar
  28. Maris, K., Nikolopoulos, K., Giannelos, K., & Assimakopoulos, V. (2007). Options trading driven by volatility directional accuracy. Applied Economics, 39(2), 253–260.CrossRefGoogle Scholar
  29. Nikolopoulos, K., Assimakopoulos, V., Bougioukos, N., Litsa, A., & Petropoulos, F. (2011a). The theta model: An essential forecasting tool for supply chain planning. Advances in Automation and Robotics, 2, 431–437.CrossRefGoogle Scholar
  30. Nikolopoulos, K., Syntetos, A., Boylan, J., Petropoulos, F., & Assimakopoulos, V. (2011b). ADIDA: An aggregate/disaggregate approach for intermittent demand forecasting. Journal of the Operational Research Society, 62, 544–554.CrossRefGoogle Scholar
  31. Petropoulos, F., Makridakis, S., Assimakopoulos, V., & Nikolopoulos, K. (2014). ‘Horses for Courses’ in demand forecasting. European Journal of Operational Research, 237, 152–163.CrossRefGoogle Scholar
  32. Prestwich, S. D., Tarim, S. A., Rossi, R., & Hnich, B. (2014). Forecasting intermittent demand by hyperbolic-exponential smoothing. International Journal of Forecasting, 30(4), 928–933.CrossRefGoogle Scholar
  33. Reeb, D. M., Sakakibara, M., & Mahmood, I. P. (2012). From the editors: Endogeneity in international business research. Journal of International Business Studies, 43, 211–218.CrossRefGoogle Scholar
  34. Rostami-Tabar, B., Babai, M. Z., Syntetos, A. A., & Ducq, Y. (2013). Demand forecasting by temporal aggregation. Naval Research Logistics, 60, 479–498.CrossRefGoogle Scholar
  35. Spithourakis, G. P., Petropoulos, F., Babai, M. Z., Nikolopoulos, K., & Assimakopoulos, V. (2011). Improving the performance of popular supply chain forecasting techniques: An empirical investigation. Supply Chain Forum: An International Journal, 12, 16–25.CrossRefGoogle Scholar
  36. Syntetos, A. A., & Boylan, J. E. (2001). On the bias of intermittent demand estimates. International Journal of Production Economics, 71, 457–466.CrossRefGoogle Scholar
  37. Syntetos, A. A., & Boylan, J. E. (2005). The accuracy of intermittent demand estimates. International Journal of Forecasting, 21, 303–314.CrossRefGoogle Scholar
  38. Syntetos, A. A., Nikolopoulos, K., & Boylan, J. E. (2010). Judging the judges through accuracy-implication metrics: The case of inventory forecasting. International Journal of Forecasting, 26, 134–143.CrossRefGoogle Scholar
  39. Taylor, A. R. (1997). On the practical problems of computing seasonal unit root tests. International Journal of Forecasting, 13(3), 307–318.CrossRefGoogle Scholar
  40. Teunter, R. H., Syntetos, A., & Babai, Z. (2011). Intermittent demand: Linking forecasting to inventory obsolescence. European Journal of Operational Research, 214, 606–615.CrossRefGoogle Scholar
  41. Thomakos, D. D., & Nikolopoulos, K. (2014). Fathoming the theta method for a unit root process. IMA Journal of Management Mathematics, 25, 105–124.CrossRefGoogle Scholar
  42. Timmerman, A., & Granger, C. W. J. (2004). Efficient market hypothesis and forecasting. International Journal of Forecasting, 20, 15–27.CrossRefGoogle Scholar
  43. Tseng, F., Yu, H., & Tzeng, G. (2002). Combining neural network model with seasonal time series ARIMA model. Technological Forecasting and Social Change, 69, 71–87.CrossRefGoogle Scholar
  44. Willemain, T. R., Smart, C. N., & Schwarz, H. F. (2004). A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, 20, 375–387.CrossRefGoogle Scholar
  45. Wright, G., & Goodwin, P. (1998). Forecasting with judgement. Chichester and New York: John Wiley and Sons.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Konstantinos I. Nikolopoulos
    • 1
    Email author
  • Dimitrios D. Thomakos
    • 2
  1. 1.Bangor Business SchoolBangor, GwyneddUK
  2. 2.University of PeloponneseTripoliGreece

Personalised recommendations