Latitudinal Variation in Plant Functional Types

  • Andrew N. Gillison
Part of the Geobotany Studies book series (GEOBOT)


Relationships between species richness, diversity and latitudinal gradients present “the oldest problem in ecology and biogeography” (Hawkins 2008). Overall biotic richness increases toward equatorial regions, but underlying explanations for this trend are inconclusive. One reason is that comparative studies of latitudinal variation at global scale are limited by a pervasive lack of uniformity in purpose and scale of data collection and analysis. This chapter explores patterns of functional diversity along latitudinal gradients across all major biomes using a global database in which all data were collected using a uniform survey protocol (VegClass). Plant functional attributes are considered at two levels: individual traits (plant functional elements or PFEs) and whole-plant syndromes or Plant Functional Types (PFTs). Together with species richness, the data reveal departures from a commonly assumed latitudinal trend that are manifested by as yet unexplained mid-latitudinal peaks. Spatial patterning between PFTs and functional traits and certain environmental factors (mainly climate and substrate) across multiple scales exhibit non-linear relationships that are generally consistent with known responses of plant functional characteristics. Other key factors that may contribute to latitudinal variation in PFTs are briefly reviewed including nutrient stoichiometry, differences in continental gene pools and land use history.


Latitudinal gradients PFT global database VegClass Stoichiometry Metabolic theory Functional modus Cortical photosynthesis Functional leaf Plant strategies 


  1. Albert CH, Thuiller W, Yoccoz NJ, Douzet R, Aubert S, Lavorel S (2010) A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct Ecol 24:1192–1201CrossRefGoogle Scholar
  2. Allen AP, Gillooly JF (2006) Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol Lett 9:947–954CrossRefGoogle Scholar
  3. Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, and the energy-equivalence rule. Science 297:1545–1548CrossRefGoogle Scholar
  4. Ansquer P, Duru M, Theau JP, Cruz P (2009) Convergence in plant traits between species within grassland communities simplifies their monitoring. Ecol Indic 9:1020–1029CrossRefGoogle Scholar
  5. Axelrod DI (1959) Poleward migration of early angiosperm flora: angiosperms only displaced the relict Jurassic-type flora at high latitudes in late cretaceous time. Science 130:203–207CrossRefGoogle Scholar
  6. Banin L, Feldpausch TR, Phillips OL, Baker TR, Lloyd J, Affum-Baffoe K, Arets EJJM, Berry NJ, Bradford M, Brienen RJW, Davies S, Drescher M, Higuchi N, Hilbert DW, Hladik A, Iida Y, Salim KA, Kassim AR, King DA, Lopez-Gonzalez G, Metcalfe D, Nilus R, Peh KS-H, Reitsma KJM, Sonké B, Taedoumg H, Tan S, White L, Wöll H, Lewis SL (2012) What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob Ecol Biogeogr 21:1179–1190CrossRefGoogle Scholar
  7. Bannister JR, Vidal OJ, Teneb E, Sandoval V (2012) Latitudinal patterns and regionalization of plant diversity along a 4270-km gradient in continental Chile. Austral Ecol. 37:500–509CrossRefGoogle Scholar
  8. Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University press, OxfordCrossRefGoogle Scholar
  9. Barry KE, Schnitzer SA, van Breugel M, Hall JS (2015) Rapid liana colonization along a secondary forest chronosequence. Biotropica 47:672–680CrossRefGoogle Scholar
  10. Beadle NCW (1951) The misuse of climate as an indicator of vegetation and soils. Ecology 32:343–345CrossRefGoogle Scholar
  11. Beck PSA, Kalmbach E, Stien A, Joly D, Nilsen L (2005) Modelling local distribution of an arctic dwarf shrub indicates an important role for remote sensing of snow cover. Remote Sens Environ 98:110–121CrossRefGoogle Scholar
  12. Bernhardt-Römermann M, Gray A, Vanbergen AJ, Bergès L, Bohner A, Brooker RW, De Bruyn L, De Cinti B, Dirnböck T, Grandin U, Hester AJ, Kanka R, Klotz S, Loucougaray G, Lundin L, Matteucci G, Mészároz I, Oláh V, Preda E, Prévosto B, Pykälä J, Schmidt W, Taylor ME, Vadineanu A, Waldmann T, Stadler J (2011) Functional traits and local environment predict vegetation responses to disturbance: a pan-European multi-site experiment. J Ecol 99:777–787CrossRefGoogle Scholar
  13. Borchert R, Calle Z, Strahler AH, Baertschi A, Broadhead RE, Kamau JS, Njoroge E, Muthuri C (2015) Insolation and photoperiodic control of tree development near the equator. New Phytol 205:7–13CrossRefGoogle Scholar
  14. Botta-Dukat Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540CrossRefGoogle Scholar
  15. Box EO (1981) Macroclimate and plant forms: an introduction to predictive modeling in phytogeography. Dr. W. Junk, The Hague, 258 pGoogle Scholar
  16. Box EO (1996) Plant functional types and climate at the global scale. J Veg Sci 7:309–320CrossRefGoogle Scholar
  17. Box EO, Fujiwara K (2005) Vegetation types and their broadscale distribution. In: van der Maarel E (ed) Vegetation ecology. Blackwell, Oxford, pp 106–128Google Scholar
  18. Broennimann O, Thuiller W, Hughes G, Midgley G, Alkemade JMR, Guisan A (2006) Do geographic distribution, niche property and life form explain plants’ vulnerability to global change? Glob Chang Biol 12:1079–1093CrossRefGoogle Scholar
  19. Brown JH, Gillooly JF, West GB, Savage VM (2003) The next step in macroecology: from general empirical patterns to universal ecological laws. In: Blackburn TM, Gaston KJ (eds) Macroecology: concepts and consequences. Blackwell, Oxford, pp 408–442Google Scholar
  20. Chown SL, Gaston KJ (2000) Areas, cradles and museums: the latitudinal gradient in species richness. Trends Ecol Evol 15:311–315CrossRefGoogle Scholar
  21. Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious Rapoport’s rule. Am Nat 144:570–595CrossRefGoogle Scholar
  22. Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol 15:70–76CrossRefGoogle Scholar
  23. Cowling RM, Campbell BM (1980) Convergence in vegetation structure in the Mediterranean communities of California, Chile and South Africa. Vegetatio 43:191–197CrossRefGoogle Scholar
  24. Cranston BH, Monks A, Whigham PA, Dickinson KJM (2015) Variation and response to experimental warming in a New Zealand cushion plant species. Austral Ecol 40:642–650. CrossRefGoogle Scholar
  25. Darwin CR (1859) The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonCrossRefGoogle Scholar
  26. De Frenne P, Graae BJ, Rodríguez-Sánchez F, Kolb A, Chabrerie O, Decocq G, De Kort H, De Schrijver A, Diekmann M, Eriksson O, Gruwez R, Hermy M, Lenoir J, Plue J, Coomes DA, Verheyen K (2013) Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J Ecol 101:784–795. CrossRefGoogle Scholar
  27. de Oliveira CC, Zandavalli RB, de Lima ALA, Rodal MJN (2015) Functional groups of woody species in semi-arid regions at low latitudes. Austral Ecol 40:40–49CrossRefGoogle Scholar
  28. Díaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463–474CrossRefGoogle Scholar
  29. Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655CrossRefGoogle Scholar
  30. Díaz S, McIntyre S, Lavorel S, Pausas JG (2002) Does hairiness matter in Harare? Resolving controversy in global comparisons of plant trait responses to ecosystem disturbance. New Phytol 154:1–14CrossRefGoogle Scholar
  31. Díaz S, Lavorel S, McIntyre S, Falsczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell B (2007) Plant trait responses to grazing – a global synthesis. Glob Chang Biol 13:313–341CrossRefGoogle Scholar
  32. Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol 186:593–608CrossRefGoogle Scholar
  33. Enquist BJ, Niklas KJ (2001) Invariant scaling relations across tree-dominated communities. Nature 410:655–660CrossRefGoogle Scholar
  34. Enquist BJ, Economo EP, Huxman TE, Allen AP, Ignace DD, Gillooly JF (2003) Scaling metabolism from organisms to ecosystems. Nature 423:639–942CrossRefGoogle Scholar
  35. Enquist BJ, Kerkhoff AJ, Huxman TE, Economow EP (2007) Adaptive differences in plant physiology and ecosystem paradoxes: insights from metabolic scaling theory. Glob Chang Biol 13:591–609CrossRefGoogle Scholar
  36. Falster DS, Westoby M (2003) Leaf size and angle vary widely across species: what consequences for light interception? New Phytol 158:509–525CrossRefGoogle Scholar
  37. Falster DS, Bränstrom Å, Dieckmann U, Westoby M (2011) Influence of four major plant traits on average height, leaf-area cover, net primary productivity, and biomass density in single-species forests: a theoretical investigation. J Ecol 99:148–164CrossRefGoogle Scholar
  38. Forster JR (1778) Observations made during a voyage round the world, on physical geography, natural history, and ethnic philosophy. G. Robinson, London (quoted by Hawkins et al. 2007)Google Scholar
  39. Fortunel C, Fine PVA, Baralot C (2012) Leaf, stem and root tissue strategies across 758 Neotropical tree species. Funct Ecol 26:1153–1161CrossRefGoogle Scholar
  40. Gallagher RV, Leishman MR (2012) A global analysis of trait variation and evolution in climbing plants. J Biogeogr 39:1757–1771CrossRefGoogle Scholar
  41. Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227CrossRefGoogle Scholar
  42. Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann MO Bot Gard 75:1–34CrossRefGoogle Scholar
  43. Gillison AN (1981) Towards a functional vegetation classification. In: Gillison AN, Anderson DJ (eds) Vegetation classification in Australia. Commonwealth Scientific and Industrial Research Organization and the Australian National University Press, Canberra, pp 30–41Google Scholar
  44. Gillison AN (2002) A generic, computer-assisted method for rapid vegetation classification and survey: tropical and temperate case studies. Conserv Ecol 6:3.
  45. Gillison AN (2012) Circumboreal gradients in plant species and functional types. Bot Pac 1:97–107CrossRefGoogle Scholar
  46. Gillison AN (2013) Plant functional types and traits at the community, ecosystem and world level. In: van der Maarel E, Franklin J (eds) Vegetation ecology, 2nd edn. Wiley, Oxford, pp 347–386. CrossRefGoogle Scholar
  47. Gillison AN (2016) Vegetation functional types and traits at multiple scales. In: Box EO (ed) Vegetation structure and function at multiple spatial, temporal and conceptual scales, Geobotany studies, pp 53–97. CrossRefGoogle Scholar
  48. Gillison AN, Carpenter G (1997) A plant functional attribute set and grammar for dynamic vegetation description and analysis. Funct Ecol 11:775–783CrossRefGoogle Scholar
  49. Gillison AN, Bignell DE, Brewer KRW, Fernandes ECM, Jones DT, Sheil D, May PH, Watt AD, Constantino R, Couto EG, Hairiah K, Jepson P, Kartono AP, Maryanto I, Neto GG, Neto RJV, van Noordwijk M, Silveira EA, Susilo F-X, Vosti SA, Nunes PC (2013) Plant functional types and traits as biodiversity indicators for tropical forests: two biogeographically separated case studies including birds, mammals and termites. Biodivers Conserv 22:1909–1930CrossRefGoogle Scholar
  50. Gillman LN, Wright SD, Cusens J, McBride PD, Malhi Y, Whittaker RJ (2014) Latitude, productivity and species richness. Glob Ecol Biogeogr 24:107–117CrossRefGoogle Scholar
  51. Gilman AC (2007) Biodiversity patterns in tropical montane rainforest flora of Costa Rica. Dissertation, University of California, Los Angeles, p 123; AAT 3295742Google Scholar
  52. Gotelli NJ, McGill BJ (2006) Null versus neutral models: what’s the difference? Ecography 29:793–800CrossRefGoogle Scholar
  53. Gourlet-Fleury S, Rossi V, Rejou-Mechain M, Freycon V, Fayolle A, Saint-André L, Cornu G, Gérard J, Sarrailh J-M, Flores O, Baya F, Billand A, Fauvet N, Gally M, Henry M, Hubert D, Pasquier A, Picard N (2011) Environmental filtering of dense-wooded species controls above-ground biomass stored in African moist forests. J Ecol 99:981–990CrossRefGoogle Scholar
  54. Graae BJ, De Frenne P, Kolb A, Brunet J, Chabrerie O, Verheyen K, Pepin N, Heinken T, Zobel M, Shevtsova A, Nijs I, Milbau A (2012) On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121:3–19CrossRefGoogle Scholar
  55. Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley, ChichesterGoogle Scholar
  56. Harrison SP, Prentice IC (2003) Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Glob Chang Biol 9:983–1004CrossRefGoogle Scholar
  57. Hawkins BA (2008) Recent progress toward understanding the global diversity gradient. Int Biogeogr Soc Blog Newsl 6:5–7Google Scholar
  58. Hawkins BA, Diniz-Filho JAF, Weis AE (2005) The mid-domain effect and diversity gradients: is there anything to learn. Am Nat 166:E140–E143CrossRefGoogle Scholar
  59. Hawkins BA, Albuquerque FS, Araújo MB, Beck J, Bini LM, Cabrero-Sañudo FJ, Castro Parga I, Diniz- Filho JAF, Ferrer-Castán D, Field R, Gómez JF, Hortal J, Kerr JT, Kitching IJ, León-Cortés JL, Lobo JM, Montoya D, Moreno JC, Olalla-Tárraga MÁ, Pausas JG, Qian H, Rahbek C, Rodríguez MÁ, Sanders NJ, Williams P (2007) A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients. Ecology 88:1877–1888CrossRefGoogle Scholar
  60. Hernández-Calderón E, Méndez-Alonzo R, Martínez-Cruz J, González-Rodríguez A, Oyama K (2014) Altitudinal changes in tree leaf and stem functional diversity in a semi-tropical mountain. J Veg Sci 24:921–931Google Scholar
  61. Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211CrossRefGoogle Scholar
  62. Hort A (1916) Theophrastus. An enquiry into plants. Book 1 (English trans: Hort A). Harvard University Press, Cambridge, MAGoogle Scholar
  63. Hsu RC-C, Wolf JHD, Tamis WLM (2014) Regional and elevational patterns in vascular epiphyte richness on an East Asian Island. Biotropica 46:549–555CrossRefGoogle Scholar
  64. Hulshof CM, Violle C, Spasojevic MJ, McGill B, Damschen E, Harrison S, Enquist BJ (2013) Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. J Veg Sci.
  65. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427. CrossRefGoogle Scholar
  66. Jankowska-Blaszczuk M, Grubb PJ (2006) Changing perspectives on the role of the soil seed bank in northern temperate deciduous forests and in tropical lowland rain forests: parallels and contrasts. Perspect Plant Ecol Evol Syst 8:3–21CrossRefGoogle Scholar
  67. Jiménez-Castillo M, Lusk CH (2013) Vascular performance of woody plants in a temperate rain forest: lianas suffer higher levels of freeze–thaw embolism than associated trees. Funct Ecol 27:403–412CrossRefGoogle Scholar
  68. Kattge J, Díaz S, Lavorel S et al (2011) TRY – a global database of plant traits. Glob Chang Biol 17:2905–2935CrossRefGoogle Scholar
  69. Kearney M, Simpson SJ, Raubenheimer D, Helmuth B (2010) Modelling the ecological niche from functional traits. Proc R Soc Lond B 365:3469–3483Google Scholar
  70. Kikuzawa K (1991) A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. Am Nat 138:1250–1263CrossRefGoogle Scholar
  71. Kikuzawa K, Onoda Y, Wright IJ, Reich PB (2013) Mechanisms underlying global temperature-related patterns in leaf longevity. Glob Ecol Biogeogr 22:982–993CrossRefGoogle Scholar
  72. Kleiman D, Aarssen LW (2007) The leaf size/number trade-off in trees. J Ecol 95:376–382CrossRefGoogle Scholar
  73. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klime L, Klimesová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B (2008) The LEDA traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274CrossRefGoogle Scholar
  74. Klimešová J, Tackenberg O, Herben T (2015) Herbs are different: clonal and bud bank traits can matter more than leaf–height–seed traits. New Phytol 210:13–17. CrossRefGoogle Scholar
  75. Kozak KHJ, Wiens J (2007) Climatic zonation drives latitudinal variation in speciation mechanisms. Proc R Soc Lond B 274:2995–3003CrossRefGoogle Scholar
  76. Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556CrossRefGoogle Scholar
  77. Lavorel S, McIntyre S, Landsberg J, Forbes TDA (1997) Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12:474–478CrossRefGoogle Scholar
  78. Lavorel S, Touzard B, Lebreto J-D, Clément B (1998) Identifying functional groups for response to disturbance in an abandoned pasture. Acta Oecol 19:227–240CrossRefGoogle Scholar
  79. Lavorel S, McIntyre S, Grigulis K (1999) Plant response to disturbance in a Mediterranean grass- land: How many functional groups? J Veg Sci 10:661–672CrossRefGoogle Scholar
  80. Lavorel S, Díaz S, Cornelissen JHC, Garnier E, Harrison SP, McIntyre S, Pausas JG, Pérez-Harguindeguy N, Roumet C, Urcelay C (2007) Plant functional types: are we getting any closer to the Holy Grail? In: Canadell JG et al (eds) Terrestrial ecosystems in a changing world, IGBP Series. Springer, Berlin, pp 149–160CrossRefGoogle Scholar
  81. Lebrija-Trejos E, Bongers F, Pérez-García EA, Meave JA (2008) Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 40:422–431CrossRefGoogle Scholar
  82. Lepš J, de Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78:481–501Google Scholar
  83. Losos JB, Schluter D (2000) Analysis of an evolutionary species-area relationship. Nature 408:847–850CrossRefGoogle Scholar
  84. Lou Y, Zhao K, Wang G, Jiang M, Lu X, Rydin H (2015) Long-term changes in marsh vegetation in Sanjiang Plain, northeast China. J Veg Sci 26:643–650CrossRefGoogle Scholar
  85. Lusk CH, Reich PB, Montgomery R, Ackerly D, Cavender-Bares J (2008) Why are evergreen leaves so contrary about shade? Trends Ecol Evol 23:299–303CrossRefGoogle Scholar
  86. Marini L, Bruun HH, Heikkinen RK, Helm A, Honnay O, Krauss J, Kühn I, Lindborg IR, Pärtel M, Bommarco R (2012) Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Divers Distrib 18:898–908CrossRefGoogle Scholar
  87. Markesteijn L, Poorter L, Bongers F (2007) Light-dependent leaf trait variation in 43 tropical dry forest tree species. Am J Bot 94:515–525CrossRefGoogle Scholar
  88. Mason NWH, de Bello F, Mouillot D, Pavoine S, Dray S (2012a) A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. J Veg Sci 24:794–806CrossRefGoogle Scholar
  89. Mason NWH, Richardson SJ, Peltzer DA, de Bello F, Wardle DA, Allen RB (2012b) Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. J Ecol 100:678–689CrossRefGoogle Scholar
  90. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185CrossRefGoogle Scholar
  91. Meher-Homji VM (1978) Vegetation classification: need we dissociate environmental terminologies from the physiognomic nomenclature? Indian For 10:653–660Google Scholar
  92. Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA, McCain CM, McCune AR, McDade LA, McPeek MA, Near TJ, Price TD, Ricklefs RE, Roy K, Sax DF, Schluter D, Sobel JM, Turelli M (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331CrossRefGoogle Scholar
  93. Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR (2009) Global patterns in plant height. J Ecol 97:923–932CrossRefGoogle Scholar
  94. Moncrieff GR, Lehmann CER, Schnitzler J, Gambiza J, Hiernaux P, Ryan CM, Shackleton CM, Williams RJ, Higgins SI (2014) Contrasting architecture of key African and Australian savanna tree taxa drives intercontinental structural divergence. Glob Ecol Biogeogr 23:1235–1244CrossRefGoogle Scholar
  95. Murphy HT, Metcalfe DJ, Bradford MG, Ford AJ (2014) Community divergence in a tropical forest following a severe cyclone. Austral Ecol. 39:696–709CrossRefGoogle Scholar
  96. Nakamura Y, Krestov PV, Omelko AM (2007) Bioclimate and zonal vegetation in Northeast Asia: first approximation to an integrated study. Phytocoenologia 37:443–470CrossRefGoogle Scholar
  97. Naveh Z, Whittaker RH (1979) Structural and floristic diversity of shrublands and woodlands in northern Israel and other mediterranean areas. Vegetatio 41:171–190CrossRefGoogle Scholar
  98. Niinemets Ü, Kull O (1998) Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity. Tree Physiol 18:467–479CrossRefGoogle Scholar
  99. Nogué S, Rull V, Vegas-Vilarrúbia T (2012) Elevational gradients in the neotropical table mountains: patterns of endemism and implications for conservation. Divers Distrib 19:676–687CrossRefGoogle Scholar
  100. Oldfield S (comp) (1997) Cactus and succulent plants – status survey and conservation action plan. IUCN/SSC Cactus and Succulent Specialist Group. IUCN, Gland Switzerland and Cambridge UK, 212 pGoogle Scholar
  101. Ordoñez JC, Bodegom PM, van Witte J-PM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149CrossRefGoogle Scholar
  102. Pausas JG, Bradstock RA, Keith DA, Keeley JE, Network tGF (2004) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85:1085–1100CrossRefGoogle Scholar
  103. Pellissier L, Bråthen KA, Vittoz P, Yoccoz NG, Dubuis A, Meier ES, Zimmermann NE, Randin CF, Thuiller W, Garraud L, Van Es J, Guisan A (2013) Thermal niches are more conserved at cold than warm limits in arctic-alpine plant species. Glob Ecol Biogeogr 22:933–941CrossRefGoogle Scholar
  104. Posada JM, Lechowicz MJ, Kitajima K (2009) Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content. Ann Bot Lond 103:795–805CrossRefGoogle Scholar
  105. Prior LD, Bowman DJMS, Eamus D (2004) Seasonal differences in leaf attributes in Australian tropical tree species: family and habitat comparisons. Funct Ecol 18:707–718CrossRefGoogle Scholar
  106. Randin CF, Paulsen J, Vitasse Y, Kollas C, Wohlgemuth T, Zimmermann NE, Körner C (2013) Do the elevational limits of deciduous tree species match their thermal latitudinal limits? Glob Ecol Biogeogr 22:913–923CrossRefGoogle Scholar
  107. Raunkiær C (1934) The life forms of plants and statistical plant geography. Clarendon Press, OxfordGoogle Scholar
  108. Raunkiær C, Gilbert-Carter H (1937) Plant life forms. Clarendon Press, Oxford. 104 ppGoogle Scholar
  109. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11006CrossRefGoogle Scholar
  110. Rosenzweig ML, Sandlin EA (1997) Species diversity and latitudes: listening to area’s signal. Oikos 80:172–176CrossRefGoogle Scholar
  111. Rossetto M, McPherson H, Siow J, Kooyman R, van der Merwe M, Wilson PD (2015) Where did all the trees come from? A novel multispecies approach reveals the impacts of biogeographical history and functional diversity on rain forest assembly. J Biogeogr 42:2172–2186. CrossRefGoogle Scholar
  112. Rusch GM, Pausas JG, Lepš J (2003) Plant functional types in relation to disturbance and land use: introduction. J Veg Sci 14:307–310CrossRefGoogle Scholar
  113. Schrodt F, Kattge J, Shan H, Fazayeli F, Joswig J, Banerjee A, Reichstein M, Bönisch G, Díaz S, Dickie J, Gillison AN, Karpatne A, Lavorel S, Leadley P, Wirth CB, Wright IJ, Wright SJ, Reich PB (2015) BHPMF – a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob Ecol Biogeogr 24:1510–1521CrossRefGoogle Scholar
  114. Serrano HC, Antunes C, Pinto MJ, Máguas C, Martins-Loução MA, Branquinho C (2015) The ecological performance of metallophyte plants thriving in geochemical islands is explained by the inclusive niche hypothesis. J Plant Ecol 8:41–50CrossRefGoogle Scholar
  115. Sizling AL, Storch D, Keil P (2009) Rapoport’s rule, species tolerances, and the latitudinal diversity gradient: geometric considerations. Ecology 90:3575–3586CrossRefGoogle Scholar
  116. Smith T, Huston M (1989) A theory of spatial and temporal dynamics of plant communities. Vegetatio 83:49–69CrossRefGoogle Scholar
  117. Smith TM, Shugart HH, Woodward FI, Burton PJ (1992) Plant functional types. In: Solomon AM, Shugart HH (eds) Vegetation dynamics and global change. Chapman & Hall, New York, pp 272–292Google Scholar
  118. Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am Nat 133:240–256CrossRefGoogle Scholar
  119. Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am Nat 140:893–911CrossRefGoogle Scholar
  120. Swenson NG, Enquist BJ, Pither J, Kerkhoff AJ, Boyle B, Weiser MD, Elser JJ, Fagan WF, Forero-Montaña J, Fyllas N, Kraft NJB, Lake JK, Moles AT, Patiño S, Phillips OL, Price CA, Reich PB, Quesada CA, Stegen JC, Valencia R, Wright IJ, Wright SJ, Andelman S, Jørgensen PM, Lacher TE Jr, Monteagudo A, Núñez-Vargas MP, Vasquez-Martínez R, Nolting KM (2012) The biogeography and filtering of woody plant functional diversity in North and South America. Glob Ecol Biogeogr 21:798–808CrossRefGoogle Scholar
  121. Tomlinson KW, Poorter L, Sterck FJ, Borghetti F, Ward D, de Bie S, van Langevelde F (2013) Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents. J Ecol 101:430–440CrossRefGoogle Scholar
  122. Vanclay J, Gillison AN, Keenan RJ (1997) Using plant functional attributes to quantify site productivity and growth patterns in mixed forests. For Ecol Manag 94:149–163CrossRefGoogle Scholar
  123. Vandewalle M, Purschke O, de Bello F, Reitalu T, Prentice HC, Lavorel S, Johansson LJ, Sykes MT (2014) Functional responses of plant communities to management, landscape and historical factors in semi-natural grasslands. J Veg Sci 25:750–759CrossRefGoogle Scholar
  124. Verheijen LM, Aerts R, Brovkin V, Cavender-Bares J, Cornelissen JHC, Kattge J, van Bodegom PM (2015) Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Glob Chang Biol 21:3074–3086CrossRefGoogle Scholar
  125. Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional. Oikos 116:882–892CrossRefGoogle Scholar
  126. von Humboldt A (1808) Ansichten der Natur mit wissenschaftlichen Erlaüterungen. J. G. Cotta, GermanyGoogle Scholar
  127. Wallace AR (1878) Tropical nature and other essays. Macmillan, New YorkCrossRefGoogle Scholar
  128. Wasof S, Lenoir J, Gallet-Moron E, Jamoneau A, Brunet J, Cousins SAO, De Frenne P, Diekmann M, Hermy M, Kolb A, Liira J, Verheyen K, Wulf M, Decocq G (2013) Ecological niche shifts of understorey plants along a latitudinal gradient of temperate forests in north-western Europe. Glob Ecol Biogeogr 22:1130–1140CrossRefGoogle Scholar
  129. Westoby M (1998) A leaf–height–seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227CrossRefGoogle Scholar
  130. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159CrossRefGoogle Scholar
  131. Withrow AP (1932) Life forms and leaf size classes of certain plant communities of the Cincinnati region. Ecology 13:12–35CrossRefGoogle Scholar
  132. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin FS, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osad N, Poorter H, Poot P, Prio L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas E, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827CrossRefGoogle Scholar
  133. Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman N, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007) Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann Bot 99:1003–1015CrossRefGoogle Scholar
  134. Yang J, Spicer RA, Spicer TEV, Arens NC, Jacques FMB, Su T, Kennedy EM, Herman AB, Steart DC, Srivastava G, Mehrotra RC, Valdes PJ, Mehrotra NC, Zhou Z–K, Lai J-S (2015) Leaf form–climate relationships on the global stage: an ensemble of characters. Glob Ecol Biogeogr 24:1113–1125. CrossRefGoogle Scholar
  135. Zapata FA, Gaston KJ, Chown SL (2005) The mid-domain effect revisited. Am Nat 166:E144–E148CrossRefGoogle Scholar
  136. Zhang R, Liu T, Zhang J-L, Sun Q-M (2015) Spatial and environmental determinants of plant species diversity in a temperate desert. J Plant Ecol.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Andrew N. Gillison
    • 1
  1. 1.Center for Biodiversity ManagementYungaburraAustralia

Personalised recommendations