Heavy Metal-Mediated Changes in Growth and Phytochemicals of Edible and Medicinal Plants

  • Shohreh Fahimirad
  • Mehrnaz HatamiEmail author


One of the most important kinds of environmental contaminates is heavy metals pollution. Plants which are exposing to high metal concentrations illustrate down regulated growth and development. Various alterations in the medical plants production of bioactive compounds have been documented. On the other hand, many researches have illustrated the high toxic residuals of heavy metals in several parts of medical plants which are potent to cause hazard to human health. Interestingly, phytoremediation is most effective and promising methods among several strategies already used to clean up the environment from heavy metals. Medical plants with high potential in heavy metal accumulation can be good candidates for soil heavy metal remediation. The cultivation or deliberate usage of medical plants in soil polluted by heavy metals must be managed carefully to diminish the final heavy metal residuals in marketing products. This chapter explains the mechanisms of plants heavy metal tolerance, the studies on transgenic plants tolerant to heavy metals, heavy metal impacts on medical plant growth and metabolites, phytoremediation ability of medical plants and standard heavy metal residuals concentration in medical plants.


Heavy metals Medicinal plants Phytoremediation Secondary metabolites Heavy metal residuals concentration 


  1. Abedin MJ, Cotter-Howells J, Meharg AA (2002) Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 240(2):311–319CrossRefGoogle Scholar
  2. Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173CrossRefGoogle Scholar
  3. Arya SK, Roy BK (2011) Manganese induced changes in growth, chlorophyll content and antioxidants activity in seedlings of broad bean (Vicia faba L.). J Environ Biol 32(6):707–711PubMedGoogle Scholar
  4. Asrar Z, Khavari-Nejad RA, Heidari H (2005) Excess manganese effects on pigments of Mentha spicata at flowering stage. Arch Agron Soil Sci 51(1):101–107CrossRefGoogle Scholar
  5. Assuncao AGL, Schat H (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360CrossRefGoogle Scholar
  6. Baker AJM, Walker PL (1989) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, FL, pp 155–177Google Scholar
  7. Banasova V, Horak O (2008) Heavy metal content in Thlaspi caerulescens J. et C. Presl growing on metalliferous and non-metalliferous soils in Central Slovakia. Int J Environ Pollut 33:133–145CrossRefGoogle Scholar
  8. Barrachina AC, Carbonell FB, Beneyto JM (1995) Arsenic uptake, distribution, and accumulation in tomato plants: effect of arsenite on plant growth and yield. J Plant Nutr 18(6):1237–1250CrossRefGoogle Scholar
  9. Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24:1269–1278CrossRefGoogle Scholar
  10. Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P (2003) Differential regulation of Nramp and IRT metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem 278:24697–24704PubMedCrossRefGoogle Scholar
  11. Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N (2004) A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Letters 569:140–148PubMedCrossRefGoogle Scholar
  12. Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9–18CrossRefGoogle Scholar
  13. Bonnet M, Camares O, Veisseire P (2000) Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). J Exp Bot 51(346):945–953PubMedGoogle Scholar
  14. Caldas ED, Machado LL (2004) Cadmium, mercury and lead in medicinal herbs in Brazil. Food Chem Toxicol 42:599–603PubMedCrossRefGoogle Scholar
  15. Calheiros CSC, Rangel AOSS, Castro PML (2008) The effects of tannery wastewater on the development of different plant species and chromium accumulation in phragmites australis. Arch Environ Contam Toxicol 55:404–414PubMedCrossRefGoogle Scholar
  16. Celechovska O, Pizova M, Konickova J (2004) The content of zinc and cadmium in medicinal plants and their infusions. Ceska Slov Farm 53:336–339PubMedGoogle Scholar
  17. Chiang CM, Chen SP, Chen LFO, Chiang MC, Chien HL, Lin KH (2013) Expression of the broccoli catalase gene (BoCAT) enhances heat tolerance in transgenic Arabidopsis. J Plant Biochem Biotechnol 23:266–277CrossRefGoogle Scholar
  18. Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. doi: 10.1155/2014/752708CrossRefGoogle Scholar
  19. Chizzola R, Lukas B (2006) Variability of the cadmium content in Hypericum species collected in Eastern Austria. Water Air Soil Pollut 170:331–343CrossRefGoogle Scholar
  20. Chunilall V, Kindness A, Jonnalagadda SB (2005) Heavy metal uptake by two edible Amaranthus herbs grown on soils contaminated with lead, mercury, cadmium, and nickel. J Environ Sci Health B 40:375–384PubMedCrossRefGoogle Scholar
  21. Cook CM, Kostidou A, Vardaka E, Lanaras T (1997) Effects of copper on the growth, photosynthesis and nutrient concentrations of Phaseolus plants. Photosynthetica 34(2):179–193CrossRefGoogle Scholar
  22. Cosio C, Martinoia E, Keller C (2004) Hyperaccumulationofcadmium and zinc in Thlaspicaerulescens and Arabidopsis hallari at the leaf cellular level. Plant Physiol 134:716–725PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cox MS, Bell PF, Kovar JL (1996) Differential tolerance of canola to arsenic when grown hydroponically or in soil. J Plant Nutr 19(12):1599–1610CrossRefGoogle Scholar
  24. Dan TV, Krishnaraj S, Saxena PK (2002) Cadmiumand nickel uptake and accumulation in scented geranium (Pelargonium sp. frensham). Water Air Soil Pollut 137:355–364CrossRefGoogle Scholar
  25. Davis MA, Pritchard SG, Boyd RS, Prior SA (2001) Developmental and induced responses of nickel-based and organic defences of the nickel-hyperaccumulating shrub, Psychotria douarrei. New Phytol 150:49–58CrossRefGoogle Scholar
  26. De D, De B (2011) Elicitation of diosgenin production in Trigonella foenumgracecum L. seedlings by heavy metals and signaling molecules. Acta Physiol Plant 33:1585–1590CrossRefGoogle Scholar
  27. Denholm J (2010) Complementary medicine and heavy metal toxicity in Australia. Web med Central 1:1–6Google Scholar
  28. Deniau AX, Pieper B (2006) WMT-B, QTL analysis of cadmium and zinc accumulation in the heavy metal hyper accumulator Thlaspicaerulescens. Theor Appl Genet 113:907–920PubMedCrossRefGoogle Scholar
  29. Dhir B, Sharmila P, Saradhi P (2008) Photosynthetic performance of Salvinianatans exposed to chromium and zinc rich wastewater. Braz J Plant Physiol 20:61–70CrossRefGoogle Scholar
  30. Diederichs N, Feiter U, Wynberg R (2006) Production of traditional medicines: technologies, standards and regulatory issues. In: Diederichs N (ed) Commercialising medicinal plants—a Southern African guide. Sun Press, Stellenbosch, pp 155–166Google Scholar
  31. Dixit P, Mukherjee PK, Ramachandran V, Eapen S (2011) Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PLoS ONE 6:e16360. doi: 10.1371/journal.pone.0016360
  32. Doncheva S, Stoynova Z, Velikova V (2001) Influence of succinate on zinc toxicity of pea plants. J Plant Nutr 24(6):789–804CrossRefGoogle Scholar
  33. Doncheva S, Georgieva K, Vassileva V, Stoyanova Z, Popov N, Ignatov G (2005) Effects of succinate on manganese toxicity in pea plants. J Plant Nutr 28(1):47–62CrossRefGoogle Scholar
  34. Dong R (2005) Molecular cloning and characterization of a phytochelatin synthase gene, PvPCS1, from Pteris vittata L. J Ind Microbiol Biot 32:527–533CrossRefGoogle Scholar
  35. Du X, Zhu YG, Liu WJ, Zhao XS (2005) Uptake of mercury (Hg) by seedlings of rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake. Environ Exp Bot 54(1):1–7CrossRefGoogle Scholar
  36. Ebbs SD, Kochian LV (1997) Toxicity of Zn and Copper to Brassica species: implication for phytoremediation. J Environ Qual 26:776–781CrossRefGoogle Scholar
  37. Eliasova A, Repca KM, Pastırova A (2004) Quantitative changes of secondary metabolites of Matricaria chamomilla by abiotic stress. Verlag der Zeitschrift für Naturforschung, Tübingen.
  38. Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C et al (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1–15PubMedPubMedCentralCrossRefGoogle Scholar
  39. Eman A, Gad N, Badran NM (2007) Effect of cobalt and nickel on plant growth, yield and flavonoids content of Hibiscus sabdariffa L. Aus J Basic Appl Sci 1:73–78Google Scholar
  40. Falandysz J, Lipka K, Kawano M, Brzostowski A, Dadey M, Jedrusiak A, Puzyn T (2003) Mercury content and its bio-concentration factors in wild mushrooms at Lukta and Morag, North-Eastern Poland. J Agric Food Chem 51:2832–2836PubMedCrossRefGoogle Scholar
  41. Filatov V, Dowdle J, Smirnoff N (2006) Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation. Mol Ecol 15:3045–3059PubMedCrossRefGoogle Scholar
  42. Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091PubMedPubMedCentralCrossRefGoogle Scholar
  43. Furze JM, Rhodes MJC, Parr AJ, Robins RJ, Whitehead IM, Threlfall DR (1991) Abiotic factors elicit sesquiterpenoid phytoalexin production but not alkaloid production in transformed root cultures of Datura stramonium. Plant Cell Rep 10:111–114PubMedCrossRefGoogle Scholar
  44. Garcia G, Faz A, Cunha M (2004) Performance of Piptatherum miliaceum (Smilo grass) in edophic Pb and Zn phytoremediation over a short growth periods. Int Biodeters Biodeg 54:245–250CrossRefGoogle Scholar
  45. Gichner T, Patkova Z, Szakova J, Demnerova K (2004) Cadmium induces DNA damages in tobacco roots, but no DNA damage, somatic mutations orhomologous recombinations in tobacco leaves. Mutat Res Genet Toxicol Environ Mut 559:49–57CrossRefGoogle Scholar
  46. Grejtovsky A, Repcak M, Eliasova A, Markusova K (2001) Effect of cadmium on active principle contents of Matricaria recutita L. Herba Pol 47:203–208Google Scholar
  47. Guan Z, Chai T, Zhang Y, Xu J, Wei W (2009) Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76:623–630. doi: 10.1016/j.chemosphere.2009.04.047CrossRefPubMedGoogle Scholar
  48. Guo XH, Gao WY, Chen HX, Huang LQ (2005) Effects of mineral cations on the accumulation of tanshinone II A and protocatechuic aldehyde in the adventitious root culture of Salvia niltiorrhiza. Zhongguo Zhong Yao Za Zhi 30:885–888PubMedGoogle Scholar
  49. Herrera-Estrella LR, Guevara-Garcia AA (2009) Heavy metal adaptation. eLS encyclopedia of life sciences. Wiley, Ltd. Published Online: 15 Mar 2009, doi: 10.1002/9780470015902.a0001318
  50. Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236PubMedCrossRefGoogle Scholar
  51. Hu PJ, Qiu RL, Senthilkumar P, Jiang D, Chen ZW, Tang YT, Liu FJ (2009) Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ Exp Bot 66:317–325CrossRefGoogle Scholar
  52. Hussain A, Abbas N, Arshad F et al (2013) Effects of diverse doses of lead (Pb) on different growth attributes of Zea mays L. Agric Sci 4(5):262–265Google Scholar
  53. Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214PubMedCrossRefGoogle Scholar
  54. Israr M, Sahi SV, Jain J (2006) Cadmium accumulation and antioxidative responses in the sesbania Drummondii callus. Arch Environ Contam Toxicol 50:121–127PubMedCrossRefGoogle Scholar
  55. Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acumip A nickel-accumulating plant from New Caledonia. Science 193:579–580PubMedCrossRefGoogle Scholar
  56. Jain SK, Vasudevan P, Jha NK (1990) Azolla pinnata and Lemna minor L. for removal of led and Zn from polluted water. Water Res 24:177–183CrossRefGoogle Scholar
  57. Jayakumar K, Abdul Jal eel C, Vijayarengan P (2007) Changes in growth, biochemical constituents and antioxidant potentials in radish (Raphanus sativus L.) under cobalt stress. Turk J Biol 31:127–136Google Scholar
  58. Jayakumar K, Jaleel CA, Azooz MM (2008) Phytochemical changes in green gram (Vigna radiata) under cobalt stress. Glob J Mol Sci 3(2):46–49Google Scholar
  59. Jayakumar K, Rajesh M, Baskaran L, Vijayarengan P (2013) Changes in nutritional metabolism of tomato (Lycopersicon esculantum Mill.) plants exposed to increasing concentration of cobalt chloride. Int J Food Nutr Saf 4(2):62–69Google Scholar
  60. Jiang W, Liu D, Hou W (2001) Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic. Biores Technol 76(1):9–13CrossRefGoogle Scholar
  61. Jin XF, Liu D (2009) Effects of zinc on root morphology and antioxidant adaptations of cadmium-treated Sedum alfredii H. J Plant Nutr 32:1642–1656CrossRefGoogle Scholar
  62. Kabir M, Iqbal MZ, Shafiq M (2009) Effects of lead on seedling growth of Thespesia populnea L. Adv Environ Biol 3(2):184–190Google Scholar
  63. Kartosentono S, Suryawati S, Indrayanto G, Zaini NC (2002) Accumulation of Cd2+ and Pb2+ in the suspension cultures of Agave amaniensis and Costus speciosus and the determination of the culture’s growth and phytosteroid content. Biotechnol Lett 24:687–690CrossRefGoogle Scholar
  64. Kasparova M, Siatka T (2004) Abiotic elicitation of the explant culture of Rheum palmatum L. by heavy metals. Ceska Slov Farm 53:252–255PubMedGoogle Scholar
  65. Kawachi M, Kobae Y, Mimura T, Maeshima M (2008) Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn2+/H+ antiporter of Arabidopsis thaliana, stimulates the transport activity. J Biol Chem 283:8374–8383PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kerkeb L, Mukherjee I, Chatterjee I, Lahner B, Salt DE, Connolly EL (2008) Iron-induced turnover of the Arabidopsis Iron-Regulated Transporter1 metal transporter requires lysine residues. Plant Physiol 146:1964–1973PubMedPubMedCentralCrossRefGoogle Scholar
  67. Khalid BY, Tinsley J (1980) Some effects of nickel toxicity on rye grass. Plant Soil 55(1):139–144CrossRefGoogle Scholar
  68. Kim D, Pedersen H, Chin C (1991) Stimulation of berberine production in Thalictrum rugosum suspension cultures in response to addition of cupric sulfate. Biotechnol Lett 13:213–216CrossRefGoogle Scholar
  69. Kim IS, Shin SY, Kim YS, Kim HY, Yoon HS (2009) Expression of a glutathione reductase from Brassica rapa subsp. pekinensis enhanced cellular redox homeostasis by modulating antioxidant proteins in Escherichia coli. Mol Cells 28:479–487PubMedCrossRefGoogle Scholar
  70. Kjær C, Elmegaard N (1996) Effects of copper sulfate on black bindweed (Polygonum convolvulus L.). Ecotoxicol Environ Saf 33(2):110–117PubMedCrossRefGoogle Scholar
  71. Kubota H, Takenaka C (2003) Arabis gemmifera is a hyperaccumulator of Cd and Zn. Int J Phytorem 5:197–220CrossRefGoogle Scholar
  72. Kumar S, Narula A, Sharma MP, Srivastava PS (2004) In vitro propagation of Pluchea lanceolata, a medicinal plant, and effect of heavy metals and different aminopurines on quercetin content. In Vitro Cell Dev Biol Plant 40:171–176CrossRefGoogle Scholar
  73. Kupper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129PubMedCrossRefGoogle Scholar
  74. Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schröder A, Kramer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNramp3 and AtNramp4 is essential for seed germination on low iron. EMBO J 24:4041–4051PubMedPubMedCentralCrossRefGoogle Scholar
  75. Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673PubMedCrossRefGoogle Scholar
  76. Lin YC, Kao CH (2005) Nickel toxicity of rice seedlings: cell wall peroxidase, lignin, and NiSO4-inhibited root growth. Crop Environ Bioinform 2:131–136Google Scholar
  77. Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS, Kim HS, Kim SH, Park HC, Yun DJ, Chung WS (2010) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochem 71:614–618CrossRefGoogle Scholar
  78. Liu GY, Zhang YX, Chai TY (2011) Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metal when expressed in yeast and tobacco. Plant Cell Rep 30:1067–1076PubMedCrossRefGoogle Scholar
  79. Lytle CM, Lytle FW, Yang N, JinHong Q, Hansen D, Zayed A, Terry N (1998) Reduction of Cr (VI) to Cr (III) by wetland plants: potential for in situ heavy metal detoxification. Environ Sci Technol 32:3087–3093CrossRefGoogle Scholar
  80. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579PubMedCrossRefPubMedCentralGoogle Scholar
  81. Maiga A, Diallo D, Bye R, Paulsen BS (2005) Determination of some toxic and essential metal ions in medicinal and edible plants from Mali. J Agric Food Chem 23:2316–2321CrossRefGoogle Scholar
  82. Manivasagaperumal R, Balamurugan S, Thiyagarajan G, Sekar J (2011) Effect of zinc on germination, seedling growth and biochemical content of cluster bean (Cyamopsis tetragonoloba (L.) Taub). Curr Bot 2(5):11–15Google Scholar
  83. Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332PubMedCrossRefGoogle Scholar
  84. Memon RA, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175CrossRefGoogle Scholar
  85. Misra A (1992) Effect of zinc stress in Japanese mint as related to growth, photosynthesis, chlorophyll content and secondary plant products-the monoterpenes. Photosynthetica 26:225–234Google Scholar
  86. Mithofer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5PubMedCrossRefGoogle Scholar
  87. Mizuno T, Hirano K, Kato S, Obata H (2008) Cloning of ZIP family metal transporter genes from the manganese hyperaccumulator plant Chengiopanax sciadophylloides and its metal transport and resistance abilities in yeast. Soil Sci Plant Nutr 54:86–94CrossRefGoogle Scholar
  88. Mkandavire M, Dude EG (2005) Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony. Germany Sci Tot Environ 336:81–89CrossRefGoogle Scholar
  89. Moral R, Navarro Pedreno J, Gomez I, Mataix J (1995) Effects of chromium on the nutrient element content and morphology of tomato. J Plant Nutr 18(4):815–822CrossRefGoogle Scholar
  90. Moustakas M, Lanaras T, Symeonidis L, Karataglis S (1994) Growth and some photosynthetic characteristics of field grown Avena sativa under copper and lead stress. Photosynthetica 30(3):389–396Google Scholar
  91. Murch SJ, Haq K, Rupasinghe HPV, Saxena PK (2003) Nickel contamination affects growth and secondary metabolite composition of St. John’s wort (Hypericum perforatum L.). Environ Exp Bot 49:251–257CrossRefGoogle Scholar
  92. Narula A, Kumar A, Srivastava PS (2005) Abiotic metal stress enhances diosgenin yield in Dioscorea bulbifera L. cultures. Plant Cell Rep 24:250–254PubMedCrossRefGoogle Scholar
  93. Nasim SA, Dhir B (2010) Heavy metals alter the potency of medicinal plants. Rev Environ ContamToxicol 203:139–149Google Scholar
  94. Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora Morphol Distribution Funct Ecol Plants 204:316–324CrossRefGoogle Scholar
  95. Nematshahi N, Lahouti M, Ganjeali A (2012) Accumulation of chromium and its effect on growth of (Allium cepa cv. Hybrid). Eur J Exp Biol 2(4):969–974Google Scholar
  96. Nielsen HD, Brown MT, Brownlee C (2003) Cellular responses of developing Fucus serratus embryos exposed to elevated concentrations of Cu2+. Plant Cell Environ 26:1737–1747CrossRefGoogle Scholar
  97. Odjegba VJ, Fasidi IO (2004) Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Ecotoxicology 13:637–646PubMedCrossRefGoogle Scholar
  98. Oh K, Li T, Cheng H, Hu X, He C, Yan L, Shinichi Y (2013) Development of profitable phytoremediation of contaminated soils with biofuel crops. J Environ Protec. doi: 10.4236/jep.2013.44A008CrossRefGoogle Scholar
  99. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184:105–126CrossRefGoogle Scholar
  100. Pandolfini T, Gabbrielli R, Comparini C (1992) Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ 15(6):719–725CrossRefGoogle Scholar
  101. Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC et al (1999) Overexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:1123–1132CrossRefGoogle Scholar
  102. Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58:1717–1728PubMedCrossRefGoogle Scholar
  103. Pollard AJ, Stewart HL, Roberson CB (2009) Manganese hyperaccumulation in Phytolacca americana L. from the southeastern united states. Northeastern Natur 16:155–162CrossRefGoogle Scholar
  104. Rai V, Vajpayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167:1159–1169CrossRefGoogle Scholar
  105. Rai V, Khatoon S, Bisht SS, Mehrotra S (2005) Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum. and Thonn. Chemosphere 61:1644–1650PubMedCrossRefGoogle Scholar
  106. Reeves RD, Brooks RR (1983) Hyperaccumulation of lead and zinc by two metallophytes from a mining area of central Europe. Environ Pollut A Ecol Biol 31:277–287CrossRefGoogle Scholar
  107. Roosens NHCJ, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci 13:208–215PubMedCrossRefGoogle Scholar
  108. Saraswat S, Rai JPN (2009) Phytoextraction potential of six plant species grown in multimetal contaminated soil. Chem Ecol 25:1–11CrossRefGoogle Scholar
  109. Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138CrossRefGoogle Scholar
  110. Sarma H, Deka S, Deka H, Saikia RR (2012) Accumulation of heavy metals in selected medicinal plants. Rev Environ Contam Toxicol 214:63–86Google Scholar
  111. Selvam A, Wong JW (2008) Phytochelatin systhesis and cadmium uptake of Brassica napus. Environ Technol 29:765–773PubMedCrossRefGoogle Scholar
  112. Sharma DM, Sharma CP, Tripathi RD (2003) Phytotoxic lesions of chromium in maize. Chemosphere 51:63–68PubMedCrossRefGoogle Scholar
  113. Sharma NC, Gardea-Torresdey JL, Parsons J, Sahi SV (2004) Chemical speciation and cellular deposition of lead in Sesbania drummondii. Environ Toxicol Chem 23:2068–2073PubMedCrossRefGoogle Scholar
  114. Sharma RK, Agrawal M, Marshall FM (2009) Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food Chem Toxicol 47:583–591PubMedCrossRefGoogle Scholar
  115. Shekar CHC, Sammaiah D, Shasthree T, Reddy KJ (2011) Effect of mercury on tomato growth and yield attributes. Int J Pharma Bio Sci 2(2):B358–B364Google Scholar
  116. Sheldon AR, Menzies NW (2005) The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 278(1–2):341–349CrossRefGoogle Scholar
  117. Shenker M, Plessner OE, Tel-Or E (2004) Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. J Plant Physiol 161(2):197–202PubMedCrossRefGoogle Scholar
  118. Sheoran IS, Singal HR, Singh R (1990) Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.). Photosynth Res 23(3):345–351PubMedCrossRefGoogle Scholar
  119. Shin SY, Kim IS, Kim YH, Park HM, Lee JY, Kang HG et al (2008) Scavenging reactive oxygen species by rice dehydroascorbate reductase alleviates oxidative stresses in Escherichia coli. Mol Cells 26:616–620PubMedGoogle Scholar
  120. Shingu Y, Kudo T, Ohsato S, Kimura M, Ono Y, Yamaguchi I, Hamamoto H (2005) Characterization of genes encoding metal tolerance proteins isolated from Nicotiana glauca and Nicotiana tabacum. Biochem Biophys Res Commun 331:675–680PubMedCrossRefGoogle Scholar
  121. Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43:246–253PubMedPubMedCentralCrossRefGoogle Scholar
  122. Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci. doi: 10.3389/fpls.2015.01143CrossRefPubMedPubMedCentralGoogle Scholar
  123. Sinha S, Saxena R (2006) Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacodise-a content in medicinal plant Bacopa monnieri L. Chemosphere 62:1340–1350PubMedCrossRefGoogle Scholar
  124. Sinha S, Saxena R, Singh S (2002) Comparative studies on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: its toxic effects. Environ Monit Assess 80:17–31PubMedCrossRefGoogle Scholar
  125. Sivaci A, Elmas E, Gumu F, Sivaci ER (2008) Removal of cadmium by Myriophyllum heterophyllum michx and Potamogeton crispus L. and its effect on pigments and total phenolic compounds. Arch Environ Contam Toxicol 54:612–618PubMedCrossRefGoogle Scholar
  126. Steenkamp V, Von arb M, Stewart MJ (2000) Metal concentrations in plants and urine from patients treated with traditional remedies. Forensic Sci Int 114:89–95PubMedCrossRefGoogle Scholar
  127. Street RA (2012) Heavy metals in medicinal plant products-an African perspective. South African J Bot 82:67–74CrossRefGoogle Scholar
  128. Sun R, Jin C, Zhou Q (2010) Characteristics of cadmium accumulation and tolerance in Rorippa globosa (Turcz.) Thell., a species with some characteristics of cadmium hyperaccumulation. Plant Growth Regul 61:67–74CrossRefGoogle Scholar
  129. Sun Q, Ye ZH, Wang XR, Wong MH (2005). Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator. Phytochemistry 66(21):2549–2556Google Scholar
  130. Talke IN, Kramer U, Hanikenne M (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167PubMedPubMedCentralCrossRefGoogle Scholar
  131. Tirillini B, Ricci A, Pintore G, Chessa M, Sighinolfi V (2006) Induction of hypericin in Hypericum perforatum in response to chromium. Fitoterapia 77:164–170PubMedCrossRefGoogle Scholar
  132. Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833PubMedCrossRefGoogle Scholar
  133. Tumova V, Blazkova R (2002) Effect on the formation of flavonoids in the culture of Ononis arvensis L. in vitro by the action of CrCl3. Ceska Slov Farm 51:44–46PubMedGoogle Scholar
  134. Tumova L, Poustkova J, Tuma V (2001) CoCl2 and NiCl2 elicitation and flavonoid production in Ononis arvensis L. culture in vitro. Acta Pharmaceutica 51:159–162Google Scholar
  135. Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40CrossRefGoogle Scholar
  136. Viehweger K (2014) How plants cope with heavy metals. Bot Stud Int J 55:35. doi: Scholar
  137. Viehweger K, Schwartze W, Schumann B, Lein W, Roos W (2006) The G alpha protein controls a pH-dependent signal path to the induction of phytoalexin biosynthesis in Eschscholzia californica. Plant Cell 18:1510–1523PubMedPubMedCentralCrossRefGoogle Scholar
  138. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132PubMedCrossRefGoogle Scholar
  139. Wang M, Zou J, Duan X, Jiang W, Liu D (2007) Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Biores Technol 98(1):82–88CrossRefGoogle Scholar
  140. Wei S, Zhou Q (2008) Trace elements in agro-ecosystems. In: Prasad MNV (ed) Trace elements as contaminants and nutrients consequences in ecosystems and human health. Wiley, New Jersey, USA, pp 55–80CrossRefGoogle Scholar
  141. Wei L, Luo C, Li X, Shen Z (2008) Copper accumulation and tolerance in Chrysanthemum coronarium L. and Sorghum sudanense L. Arch Environ Contam Toxicol 55:238–246PubMedCrossRefGoogle Scholar
  142. Willems G, Dräger DB, Courbot M (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. Halleri (Brassicaceae) an analysis of quantitative trait loci. Genetics 176:659–674PubMedPubMedCentralCrossRefGoogle Scholar
  143. Xia Z, Sun K, Wang M, Wu K, Zhang H, Wu J (2012) Overexpression of a maize sulfite oxidase gene in tobacco enhances tolerance to sulfite stress via sulfite oxidation and CAT-mediated H2O2 scavenging. PLoS One 7:e37383PubMedPubMedCentralCrossRefGoogle Scholar
  144. Xing JP, Jiang RF, Ueno D, Ma JF, Schat H, McGrath SP, Zhao FJ (2008) Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytol 178:315–325PubMedCrossRefGoogle Scholar
  145. Xiong YH, Yang XE, Ye ZQ, He ZL (2004) Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:2925–2940PubMedCrossRefGoogle Scholar
  146. Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353PubMedCrossRefGoogle Scholar
  147. Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W et al (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621PubMedCrossRefGoogle Scholar
  148. Yourtchi MS, Bayat HR (2013) Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV.). Int J Agri Crop Sci 6(15):1099–1103Google Scholar
  149. Zeng X, Ma LQ, Qiu R, Tang Y (2009) Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environ Exp Bot 66:242–248CrossRefGoogle Scholar
  150. Zengin FK (2006) The effects of Co2+ and Zn2+ on the contents of protein, abscisic acid, proline and chlorophyll in bean (Phaseolus vulgaris cv. Strike) seedlings. J Environ Biol 27:441–448PubMedGoogle Scholar
  151. Zhang C, Yan Q, Cheuk W, Wu J (2004) Enhancement of tanshinone production in Salvia miltiorrhiza hairy root culture by Ag+ elicitation and nutrient feeding. Planta Med 70:147–151PubMedCrossRefGoogle Scholar
  152. Zheng Z, Wu M (2004) Cadmium treatment enhances the production of alkaloid secondary metabolites in Catharanthus roseus. Plant Sci 166:507–514CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Agricultural Biotechnology, Faculty of Agriculture and Natural ResourcesUniversity of TehranKarajIran
  2. 2.Department of Medicinal PlantsArak UniversityArakIran

Personalised recommendations