Advertisement

Assessment of Reduction

  • David J. Hak
Chapter

Abstract

Using a direct reduction method, the fracture site is visualized greatly increasing the likelihood of an anatomic reduction in simple fracture patterns. In contrast, the fracture site is commonly not visualized during indirect reductions, and the surgeon relies on various methods to ensure restoration of accurate length, alignment, and rotation. The benefits of indirect reduction methods include decreased soft tissue dissection and less stripping of periosteal blood supply, with the goal of improving fracture healing and decreasing soft tissue wound complications. Because indirect reduction methods are being increasingly used, methods to assess fracture reduction have become vitally important.

References

  1. 1.
    Haller JM, O'Toole R, Graves M, Barei D, Gardner M, Kubiak E, Nascone J, Nork S, Presson AP, Higgins TF. How much articular displacement can be detected using fluoroscopy for tibial plateau fractures? Injury. 2015;46(11):2243–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Paley D, Tetsworth K. Mechanical axis deviation of the lower limbs: Preoperative planning of uniapical angular deformities of the tibia or femur. Clin Orthop. 1992;280:48–64.Google Scholar
  3. 3.
    Paley D, Herzenberg JE, Tetsworth K, McKie J, Bhave A. Deformity planning for frontal and sagittal plane corrective osteotomies. Orthop Clin North Am. 1994;25(3):425–65.PubMedGoogle Scholar
  4. 4.
    Capo JT, Kinchelow T, Orillaza NS, Rossy W. Accuracy of fluoroscopy in closed reduction and percutaneous fixation of simulated Bennett's fracture. J Hand Surg Am. 2009;34(4):637–41.CrossRefPubMedGoogle Scholar
  5. 5.
    Probe RA. Lower extremity angular malunion: evaluation and surgical correction. J Am Acad Orthop Surg. 2003;11(5):302–11.CrossRefPubMedGoogle Scholar
  6. 6.
    Belanger M, Fadale P. Compartment syndrome of the leg after arthroscopic examination of a tibial plateau fracture. Case report and review of the literature. Arthroscopy. 1997;13(5):646–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Ruch DS, Vallee J, Poehling GG, Smith BP, Kuzma GR. Arthroscopic reduction versus fluoroscopic reduction in the management of intra-articular distal radius fractures. Arthroscopy. 2004;20(3):225–30.CrossRefPubMedGoogle Scholar
  8. 8.
    Krause M, Preiss A, Meenen NM, Madert J, Frosch KH. ‘Fracturoscopy’ is superior to fluoroscopy in the articular reconstruction of complex tibial plateau fractures – an arthroscopic assisted fracture reduction technique. J Orthop Trauma. 2016;30(8):437–44.CrossRefPubMedGoogle Scholar
  9. 9.
    Lobenhoffer P, Schulze M, Gerich T, Lattermann C, Tscherne H. Closed reduction/percutaneous fixation of tibial plateau fractures: arthroscopic versus fluoroscopic control of reduction. J Orthop Trauma. 1999;13(6):426–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Nelson DW, Duwelius PJ. CT-guided fixation of sacral fractures and sacroiliac joint disruptions. Radiology. 1991;180:527–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Duwelius PJ, Van Allen M, Bray TJ, Nelson D. Computed tomography-guided fixation of unstable posterior pelvic ring disruptions. J Orthop Trauma. 1992;6(4):420–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Cole RJ, Bindra RR, Evanoff BA, Gilula LA, Yamaguchi K, Gelberman RH. Radiographic evaluation of osseous displacement following intra-articular fractures of the distal radius: reliability of plain radiography versus computed tomography. J Hand Surg [Am]. 1997;22:792–800.CrossRefGoogle Scholar
  13. 13.
    Borrelli J Jr, Goldfarb C, Catalano L, Evanoff BA. Assessment of articular fragment displacement in acetabular fractures: a comparison of computerized tomography and plain radiographs. J Orthop Trauma. 2002;16:449–56.CrossRefPubMedGoogle Scholar
  14. 14.
    Moed BR, Carr SE, Gruson KI, Watson JT, Craig JG. Computed tomographic assessment of fractures of the posterior wall of the acetabulum after operative treatment. J Bone Jt Surg Am. 2003;85-A:512–22.CrossRefGoogle Scholar
  15. 15.
    Hott JS, Papadopoulos SM, Theodore N, Dickman CA, Sonntag VK. Intraoperative Iso-C C-arm navigation in cervical spinal surgery: Review of the first 52 cases. Spine. 2004;29(24):2856–60.CrossRefPubMedGoogle Scholar
  16. 16.
    Hsu AR, Gross CE, Lee S. Intraoperative O-arm computed tomography evaluation of syndesmotic reduction: case report. Foot Ankle Int. 2013;34(5):753–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Gösling T, Klingler K, Geerling J, Shin H, Fehr M, Krettek C, Hüfner T. Improved intra-operative reduction control using a three-dimensional mobile image intensifier – a proximal tibia cadaver study. Knee. 2009;16(1):58–63.CrossRefPubMedGoogle Scholar
  18. 18.
    Mehling I, Rittstieg P, Mehling AP, Küchle R, Müller LP, Rommens PM. Intraoperative C-arm CT imaging in angular stable plate osteosynthesis of distal radius fractures. J Hand Surg Eur Vol. 2013;38(7):751–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Eckardt H, Lind M. Effect of intraoperative three-dimensional imaging during the reduction and fixation of displaced calcaneal fractures on articular congruence and implant fixation. Foot Ankle Int. 2015;36(7):764–73.CrossRefPubMedGoogle Scholar
  20. 20.
    Grossterlinden L, Nuechtern J, Begemann PG, Fuhrhop I, Petersen JP, Ruecker A, Rupprecht M, Lehmann W, Schumacher U, Rueger JM, Briem D. Computer-assisted surgery and intraoperative three-dimensional imaging for screw placement in different pelvic regions. J Trauma. 2011;71(4):926–32.CrossRefPubMedGoogle Scholar
  21. 21.
    Luria S, Safran O, Zinger G, Mosheiff R, Liebergall M. Intraoperative 3-dimensional imaging of scaphoid fracture reduction and fixation. Orthop Traumatol Surg Res. 2015;101(3):353–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Eckardt H, Lind D, Toendevold E. Open reduction and internal fixation aided by intraoperative 3-dimensional imaging improved the articular reduction in 72 displaced acetabular fractures. Acta Orthop. 2015;86(6):684–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Weil YA, Liebergall M, Mosheiff R, Singer SB, Joskowicz L, Khoury A. Assessment of two 3-D fluoroscopic systems for articular fracture reduction: a cadaver study. Int J Comput Assist Radiol Surg. 2011;6(5):685–92.CrossRefPubMedGoogle Scholar
  24. 24.
    Herscovici D Jr, Scaduto JM. Assessing leg length after fixation of comminuted femur fractures. Clin Orthop Relat Res. 2014;472(9):2745–50.CrossRefPubMedGoogle Scholar
  25. 25.
    Terry MA, Winell JJ, Green DW, Schneider R, Peterson M, Marx RG, Widmann RF. Measurement variance in limb length discrepancy: Clinical and radiographic assessment of interobserver and intraobserver variability. J Pediatr Orthop. 2005;25:197–201.CrossRefPubMedGoogle Scholar
  26. 26.
    Sabharwal S, Kumar A. Methods for assessing leg length discrepancy. Clin Orthop Relat Res. 2008;466(12):2910–22.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jaarsma RL, Pakviz DFM, Verdonschot N, et al. Rotational malalignment after intramedullary nailing of femoral fractures. J Orthop Trauma. 2004;18:403–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Puloski S, Romano C, Buckley R, Powell J. Rotational malalignment of the tibia following reamed intramedullary nail fixation. J Orthop Trauma. 2004;18:397–402.CrossRefPubMedGoogle Scholar
  29. 29.
    Krettek C, Miclau T, Grun O, et al. Intraoperative control of axes, rotation and length in femoral and tibial fractures. Technical note. Injury. 1998;29(Suppl 3):C29–39.CrossRefPubMedGoogle Scholar
  30. 30.
    Jeanmart L, Baert AL, Wackenheim A. Computer tomography of neck, chest, spine and limbs. Atlas of pathologic computer tomography, vol. 3. New York, NY: Springer-Verlag; 1983. p. 171–7.Google Scholar
  31. 31.
    Clementz BG. Assessment of tibial torsion and rotational deformity with a new fluoroscopic technique. Clin Orthop Rel Res. 1989;245:199–209.Google Scholar
  32. 32.
    Clementz BG. Tibial torsion measured in normal adults. Acta Orthop Scand. 1988;59(4):441–2.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Denver Health Medical CenterUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations