Fracture Healing: Back to Basics and Latest Advances
Chapter
First Online:
Abstract
Our understanding in the mechanisms promoting bone repair and involvement of molecular mediators and cellular elements in fracture healing are ever expanding. What was initially perceived as a simple process, nowadays is known to be very complex and multifaceted. The aim of this chapter is to present the fundamental principles of fracture healing, factors that can influence it adversely, and key approaches to stimulate a successful fracture healing response.
Notes
Conflict of Interest
No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this chapter.
References
- 1.Lane WAL. The operative treatment of fractures. 2nd ed. London: The Medical Publishing Co. Ltd; 1914.Google Scholar
- 2.Danis R. Théorie et pratique de 1’ostéosynthèse. Paris: Masson; 1949.Google Scholar
- 3.Kolar P, Gaber T, Perka C, Duda GN, Buttgereit F. Human early fracture hematoma is characterized by inflammation and hypoxia. Clin Orthop Relat Res. 2011;469(11):3118–26.CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Burke D, Dishowitz M, Sweetwyne M, Miedel E, Hankenson KD, Kelly DJ. The role of oxygen as a regulator of stem cell fate during fracture repair in TSP2-null mice. J Orthop Res. 2013;31(10):1585–96.CrossRefPubMedGoogle Scholar
- 5.Wray JB. The biochemical characteristics of the fracture hematoma in man. Surg Gynecol Obstet. 1970;130(5):847–52.PubMedGoogle Scholar
- 6.Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng Part B Rev. 2008;14(2):179–86.CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Xing Z, Lu C, Hu D, Miclau T 3rd, Marcucio RS. Rejuvenation of the inflammatory system stimulates fracture repair in aged mice. J Orthop Res. 2010;28(8):1000–6.PubMedPubMedCentralGoogle Scholar
- 8.Friedman AD. Cell cycle and developmental control of hematopoiesis by Runx1. J Cell Physiol. 2009;219(3):520–4.CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Karnes JM, Daffner SD, Watkins CM. Multiple roles of tumor necrosis factor-alpha in fracture healing. Bone. 2015;78:87–93.CrossRefPubMedGoogle Scholar
- 10.Mountziaris PM, Spicer PP, Kasper FK, Mikos AG. Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng Part B Rev. 2011;17(6):393–402.CrossRefPubMedPubMedCentralGoogle Scholar
- 11.Nam D, Mau E, Wang Y, Wright D, Silkstone D, Whetstone H, Whyne C, Alman B. T-lymphocytes enable osteoblast maturation via IL-17F during the early phase of fracture repair. PLoS One. 2012;7(6):e40044.CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998;(355 Suppl):S7–21.Google Scholar
- 13.Bianco P, Cancedda FD, Riminucci M, Cancedda R. Bone formation via cartilage models: the “borderline” chondrocyte. Matrix Biol. 1998;17(3):185–92.CrossRefPubMedGoogle Scholar
- 14.Daftari TK, Whitesides TE Jr, Heller JG, Goodrich AC, McCarey BE, Hutton WC. Nicotine on the revascularization of bone graft. An experimental study in rabbits. Spine (Phila Pa 1976). 1994;19(8):904–11.CrossRefGoogle Scholar
- 15.Rubenstein I, Yong T, Rennard SI, Mayhan WG. Cigarette smoke extract attenuates endothelium-dependent arteriolar dilatation in vivo. Am J Phys. 1991;261(6 Pt 2):H1913–8.Google Scholar
- 16.Brighton CT, Hunt RM. Histochemical localization of calcium in the fracture callus with potassium pyroantimonate. Possible role of chondrocyte mitochondrial calcium in callus calcification. J Bone Joint Surg Am. 1986;68(5):703–15.CrossRefPubMedGoogle Scholar
- 17.Einhorn TA, Hirschman A, Kaplan C, Nashed R, Devlin VJ, Warman J. Neutral protein-degrading enzymes in experimental fracture callus: a preliminary report. J Orthop Res. 1989;7(6):792–805.CrossRefPubMedGoogle Scholar
- 18.Ford JL, Robinson DE, Scammell BE. The fate of soft callus chondrocytes during long bone fracture repair. J Orthop Res. 2003;21(1):54–61.CrossRefPubMedGoogle Scholar
- 19.Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8(3):133–43. https://doi.org/10.1038/nrrheum.2012.1.CrossRefPubMedGoogle Scholar
- 20.Pountos I, Georgouli T, Calori GM, Giannoudis PV. Do nonsteroidal anti-inflammatory drugs affect bone healing? A critical analysis. Sci World J. 2012;2012:606404.CrossRefGoogle Scholar
- 21.Lindaman LM. Bone healing in children. Clin Podiatr Med Surg. 2001;18:97–108.PubMedGoogle Scholar
- 22.Wilkins KE. Principles of fracture remodeling in children. Injury. 2005;36(Suppl 1):A3–11.CrossRefPubMedGoogle Scholar
- 23.Aho AJ. Electron microscopic and histologic studies on fracture repair in old and young rats. Acta Chir Scand Suppl. 1966;357:162–5.PubMedGoogle Scholar
- 24.Parker MJ. Prediction of fracture union after internal fixation of intracapsular femoral neck fractures. Injury. 1994;25(Suppl 2):B3–6.PubMedGoogle Scholar
- 25.Robinson CM, Court-Brown CM, McQueen MM, Wakefield AE. Estimating the risk of nonunion following nonoperative treatment of a clavicular fracture. J Bone Joint Surg Am. 2004;86-A(7):1359–65.CrossRefPubMedGoogle Scholar
- 26.Zura R, Braid-Forbes MJ, Jeray K, Mehta S, Einhorn TA, Watson JT, Della Rocca GJ, Forbes K, Steen RG. Bone fracture nonunion rate decreases with increasing age: A prospective inception cohort study. Bone. 2017;95:26–32.CrossRefPubMedGoogle Scholar
- 27.Hayda RA, Brighton CT, Esterhai JL Jr. Pathophysiology of delayed healing. Clin Orthop Relat Res. 1998;(355 Suppl):S31–40.Google Scholar
- 28.Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11(1):45–54.CrossRefPubMedGoogle Scholar
- 29.Einhorn TA, Bonnarens F, Burstein AH. The contributions of dietary protein and mineral to the healing of experimental fractures. A biomechanical study. J Bone Joint Surg Am. 1986;68(9):1389–95.CrossRefPubMedGoogle Scholar
- 30.Brinker MR, Bailey DE Jr. Fracture healing in tibia fractures with an associated vascular injury. J Trauma. 1997;42(1):11–9.CrossRefPubMedGoogle Scholar
- 31.Bibbo C, Lin SS, Beam HA, Behrens FF. Complications of ankle fractures in diabetic patients. Orthop Clin North Am. 2001;32(1):113–33.CrossRefPubMedGoogle Scholar
- 32.Gorter EA, Krijnen P, Schipper IB. Vitamin D status and adult fracture healing. J Clin Orthop Trauma. 2017;8(1):34–7.CrossRefPubMedGoogle Scholar
- 33.Kowalewski K, Yong S. Bone and urinary hydroxyproline in normal and hypothyroid rat with a long bone fracture. Acta Endocrinol. 1967;56(3):547–53.PubMedGoogle Scholar
- 34.Bilous RW, Tunbridge WM. The epidemiology of hypothyroidism-an update. Bailliere Clin Endocrinol Metab. 1988;2(3):531–40.CrossRefGoogle Scholar
- 35.Dix B, Grant-McDonald L, Catanzariti A, Saltrick K. Preoperative Anemia in Hindfoot and Ankle Arthrodesis. Foot Ankle Spec. 2017;10(2):109–15.CrossRefPubMedGoogle Scholar
- 36.Gruson KI, Aharonoff GB, Egol KA, Zuckerman JD, Koval KJ. The relationship between admission hemoglobin level and outcome after hip fracture. J Orthop Trauma. 2002;16(1):39–44.CrossRefPubMedGoogle Scholar
- 37.Chakkalakal DA, Novak JR, Fritz ED, Mollner TJ, McVicker DL, Lybarger DL, McGuire MH, Donohue TM Jr. Chronic ethanol consumption results in deficient bone repair in rats. Alcohol Alcohol. 2002;37(1):13–20.CrossRefPubMedGoogle Scholar
- 38.Hazan EJ, Hornicek FJ, Tomford W, Gebhardt MC, Mankin HJ. The effect of adjuvant chemotherapy on osteoarticular allografts. Clin Orthop Relat Res. 2001;385:176–81.CrossRefGoogle Scholar
- 39.Hausman MR, Schaffler MB, Majeska RJ. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone. 2001;29(6):560–4.CrossRefPubMedGoogle Scholar
- 40.Aaron JE, Francis RM, Peacock M, Makins NB. Contrasting microanatomy of idiopathic and corticosteroid-induced osteoporosis. Clin Orthop Relat Res. 1989;243:294–305.Google Scholar
- 41.Pountos I, Georgouli T, Blokhuis TJ, Pape HC, Giannoudis PV. Pharmacological agents and impairment of fracture healing: what is the evidence? Injury. 2008;39(4):384–94.CrossRefPubMedGoogle Scholar
- 42.Pountos I, Giannoudis PV. Effect of methotrexate on bone and wound healing. Expert Opin Drug Saf. 2017;16(5):535–45.CrossRefPubMedGoogle Scholar
- 43.Gerster JC, Bossy R, Dudler J. Bone non-union after osteotomy in patients treated with methotrexate. J Rheumatol. 1999;26:2695–7.PubMedGoogle Scholar
- 44.Neal BC, Rodgers A, Clark T, Gray H, Reid IR, Dunn L, MacMahon SW. A systematic survey of 13 randomized trials of non-steroidal anti-inflammatory drugs for the prevention of heterotopic bone formation after major hip surgery. Acta Orthop Scand. 2000;71(2):122–8.CrossRefPubMedGoogle Scholar
- 45.Miller GK. Editorial Commentary: The Efficacy of Nonsteroidal Anti-inflammatory Drugs for Prophylaxis of Heterotopic Ossification in Hip Arthroscopy-Do We Treat Patients or X-rays? Arthroscopy. 2016;32(3):526–7.CrossRefPubMedGoogle Scholar
- 46.Jeffcoach DR, Sams VG, Lawson CM, Enderson BL, Smith ST, Kline H, Barlow PB, Wylie DR, Krumenacker LA, McMillen JC, Pyda J, Daley BJ, University of Tennessee Medical Center, Department of Surgery. Nonsteroidal anti-inflammatory drugs' impact on nonunion and infection rates in long-bone fractures. J Trauma Acute Care Surg. 2014;76(3):779–83.CrossRefPubMedGoogle Scholar
- 47.Perry AC, Prpa B, Rouse MS, Piper KE, Hanssen AD, Steckelberg JM, Patel R. Levofloxacin and trovafloxacin inhibition of experimental fracture-healing. Clin Orthop Relat Res. 2003;414:95–100.CrossRefGoogle Scholar
- 48.Miclau T, Edin ML, Lester GE, Lindsey RW, Dahners LE. Bone toxicity of locally applied aminoglycosides. J Orthop Trauma. 1995;9(5):401–6.CrossRefPubMedGoogle Scholar
- 49.Pilge H, Fröbel J, Prodinger PM, Mrotzek SJ, Fischer JC, Zilkens C, Bittersohl B, Krauspe R. Enoxaparin and rivaroxaban have different effects on human mesenchymal stromal cells in the early stages of bone healing. Bone Joint Res. 2016;5(3):95–100.CrossRefPubMedPubMedCentralGoogle Scholar
- 50.Street JT, McGrath M, O'Regan K, Wakai A, McGuinness A, Redmond HP. Thromboprophylaxis using a low molecular weight heparin delays fracture repair. Clin Orthop Relat Res. 2000;(381):278–89.Google Scholar
- 51.Melhus H, Michaëlsson K, Holmberg L, Wolk A, Ljunghall S. Smoking, antioxidant vitamins, and the risk of hip fracture. J Bone Miner Res. 1999;14(1):129–35.CrossRefPubMedGoogle Scholar
- 52.Porter SE, Hanley EN Jr. The musculoskeletal effects of smoking. J Am Acad Orthop Surg. 2001;9(1):9–17.CrossRefPubMedGoogle Scholar
- 53.Castillo RC, Bosse MJ, MacKenzie EJ, Patterson BM, LEAP Study Group. Impact of smoking on fracture healing and risk of complications in limb-threatening open tibia fractures. J Orthop Trauma. 2005;19(3):151–7.CrossRefPubMedGoogle Scholar
- 54.Saville PD. Changes in bone mass with age and alcoholism. J Bone Joint Surg Am. 1965;47:492–9.CrossRefPubMedGoogle Scholar
- 55.Arlot ME, Bonjean M, Chavassieux PM, Meunier PJ. Bone histology in adults with aseptic necrosis. Histomorphometric evaluation of iliac biopsies in seventy-seven patients. J Bone Joint Surg Am. 1983;65:1319–27.CrossRefPubMedGoogle Scholar
- 56.Nogueira-Filho Gda R, Cadide T, Rosa BT, Neiva TG, Tunes R, Peruzzo D, Nociti FH Jr, César-Neto JB. Cannabis sativa smoke inhalation decreases bone filling around titanium implants: a histomorphometric study in rats. Implant Dent. 2008;17(4):461–70.CrossRefPubMedGoogle Scholar
- 57.Dimitriou R, Kanakaris N, Soucacos PN, Giannoudis PV. Genetic predisposition to non-union: evidence today. Injury. 2013;44(Suppl 1):S50–3.CrossRefPubMedGoogle Scholar
- 58.Zeckey C, Hildebrand F, Glaubitz LM, Jürgens S, Ludwig T, Andruszkow H, Hüfner T, Krettek C, Stuhrmann M. Are polymorphisms of molecules involved in bone healing correlated to aseptic femoral and tibial shaft non-unions? J Orthop Res. 2011;29(11):1724–31. https://doi.org/10.1002/jor.21443.CrossRefPubMedGoogle Scholar
- 59.Dimitriou R, Carr IM, West RM, Markham AF, Giannoudis PV. Genetic predisposition to fracture non-union: a case control study of a preliminary single nucleotide polymorphisms analysis of the BMP pathway. BMC Musculoskelet Disord. 2011;12:44.CrossRefPubMedPubMedCentralGoogle Scholar
- 60.Rhinelander FW, Baragry RA. Microangiography in bone healing: Undisplaced closed fractures. J Bone Joint Surg. 1962;44A:1273.CrossRefGoogle Scholar
- 61.Fong K, Truong V, Foote CJ, Petrisor B, Williams D, Ristevski B, et al. Predictors of nonunion and reoperation in patients with fractures of the tibia: an observational study. BMC Musculoskelet Disord. 2013;14:103.CrossRefPubMedPubMedCentralGoogle Scholar
- 62.Claes L, Augat P, Suger G, Wilke HJ. Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res. 1997 Jul;15(4):577–84.CrossRefPubMedGoogle Scholar
- 63.Claes L, Eckert-Hübner K, Augat P. The fracture gap size influences the local vascularization and tissue differentiation in callus healing. Langenbeck's Arch Surg. 2003;388(5):316–22.CrossRefGoogle Scholar
- 64.Riehl JT, Connolly K, Haidukewych G, Koval K. Fractures Due to Gunshot Wounds: Do Retained Bullet Fragments Affect Union? Iowa Orthop J. 2015;35:55–61.PubMedPubMedCentralGoogle Scholar
- 65.Claes L, Maurer-Klein N, Henke T, Gerngross H, Melnyk M, Augat P. Moderate soft tissue trauma delays new bone formation only in the early phase of fracture healing. J Orthop Res. 2006;24(6):1178–85.CrossRefPubMedGoogle Scholar
- 66.Lu C, Miclau T, Hu D, Marcucio RS. Ischemia leads to delayed union during fracture healing: a mouse model. J Orthop Res. 2007;25(1):51–61.CrossRefPubMedPubMedCentralGoogle Scholar
- 67.Reverte MM, Dimitriou R, Kanakaris NK, Giannoudis PV. What is the effect of compartment syndrome and fasciotomies on fracture healing in tibial fractures? Injury. 2011;42(12):1402–7.CrossRefPubMedGoogle Scholar
- 68.Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Augat P. Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res. 1998;(355 Suppl):S132–47.Google Scholar
- 69.Mavčič B, Antolič V. Optimal mechanical environment of the healing bone fracture/osteotomy. Int Orthop. 2012;36(4):689–95.CrossRefPubMedPubMedCentralGoogle Scholar
- 70.Hu X, Xu S, Lu H, Chen B, Zhou X, He X, Dai J, Zhang Z, Gong S. Minimally invasive plate osteosynthesis vs conventional fixation techniques for surgically treated humeral shaft fractures: a meta-analysis. J Orthop Surg Res. 2016;11(1):59.CrossRefPubMedPubMedCentralGoogle Scholar
- 71.Duan X, Li T, Mohammed AQ, Xiang Z. Reamed intramedullary nailing versus unreamed intramedullary nailing for shaft fracture of femur: a systematic literature review. Arch Orthop Trauma Surg. 2011;131(10):1445–52.CrossRefPubMedGoogle Scholar
- 72.Krettek C, Haas N, Tscherne H. The role of supplemental lag-screw fixation for open fractures of the tibial shaft treated with external fixation. J Bone Joint Surg Am. 1991;73(6):893–7.CrossRefPubMedGoogle Scholar
- 73.Claes L, Grass R, Schmickal T, Kisse B, Eggers C, Gerngross H, Mutschler W, Arand M, Wintermeyer T, Wentzensen A. Monitoring and healing analysis of 100 tibial shaft fractures. Langenbeck's Arch Surg. 2002;387(3–4):146–52.CrossRefGoogle Scholar
- 74.Pountos I, Panteli M, Georgouli T, Giannoudis PV. Neoplasia following use of BMPs: is there an increased risk? Expert Opin Drug Saf. 2014;13(11):1525–34.CrossRefPubMedGoogle Scholar
- 75.Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(Suppl 4):S3–6.CrossRefGoogle Scholar
- 76.Crist BD, Stoker AM, Stannard JP, Cook JL. Analysis of relevant proteins from bone graft harvested using the reamer irrigator and aspirator system (RIA) versus iliac crest (IC) bone graft and RIA waste water. Injury. 2016;47(8):1661–8.CrossRefPubMedGoogle Scholar
- 77.Marchand LS, Rothberg DL, Kubiak EN, Higgins TF. Is This Autograft Worth It?: The Blood Loss and Transfusion Rates Associated With Reamer Irrigator Aspirator Bone Graft Harvest. J Orthop Trauma. 2017;31(4):205–9.CrossRefPubMedGoogle Scholar
- 78.Pountos I, Georgouli T, Kontakis G, Giannoudis PV. Efficacy of minimally invasive techniques for enhancement of fracture healing: evidence today. Int Orthop. 2010;34(1):3–12.CrossRefPubMedGoogle Scholar
- 79.Kanakaris NK, Calori GM, Verdonk R, Burssens P, De Biase P, Capanna R, Vangosa LB, Cherubino P, Baldo F, Ristiniemi J, Kontakis G, Giannoudis PV. Application of BMP-7 to tibial non-unions: a 3-year multicenter experience. Injury. 2008;39(Suppl 2):S83–90.CrossRefPubMedGoogle Scholar
- 80.Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004;91(1):4–15.PubMedGoogle Scholar
- 81.Sheth U, Simunovic N, Klein G, Fu F, Einhorn TA, Schemitsch E, Ayeni OR, Bhandari M. Efficacy of autologous platelet-rich plasma use for orthopaedic indications: a meta-analysis. J Bone Joint Surg Am. 2012;94(4):298–307.CrossRefPubMedGoogle Scholar
- 82.Pountos I, Georgouli T, Henshaw K, Bird H, Jones E, Giannoudis PV. The effect of bone morphogenetic protein-2, bone morphogenetic protein-7, parathyroid hormone, and platelet-derived growth factor on the proliferation and osteogenic differentiation of mesenchymal stem cells derived from osteoporotic bone. J Orthop Trauma. 2010;24(9):552–6.CrossRefPubMedGoogle Scholar
- 83.DiGiovanni CW, Lin SS, Baumhauer JF, Daniels T, Younger A, Glazebrook M, Anderson J, Anderson R, Evangelista P, Lynch SE, North American Orthopedic Foot and Ankle Study Group. Recombinant human platelet-derived growth factor-BB and beta-tricalcium phosphate (rhPDGF-BB/β-TCP): an alternative to autogenous bone graft. J Bone Joint Surg Am. 2013;95(13):1184–92.CrossRefPubMedGoogle Scholar
- 84.Tzioupis CC, Giannoudis PV. The Safety and Efficacy of Parathyroid Hormone (PTH) as a Biological Response Modifier for the Enhancement of Bone Regeneration. Curr Drug Saf. 2006;1(2):189–203.CrossRefPubMedGoogle Scholar
- 85.Peichl P, Holzer LA, Maier R, Holzer G. Parathyroid hormone 1-84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg Am. 2011;93(17):1583–7.CrossRefPubMedGoogle Scholar
- 86.Aspenberg P, Johansson T. Teriparatide improves early callus formation in distal radial fractures. Acta Orthop. 2010;81(2):234–6.CrossRefPubMedPubMedCentralGoogle Scholar
- 87.Türker M, Aslan A, Çırpar M, Kochai A, Tulmaç ÖB, Balcı M. Histological and biomechanical effects of zoledronate on fracture healing in an osteoporotic rat tibia model. Eklem Hastalik Cerrahisi. 2016;27(1):9–15.CrossRefPubMedGoogle Scholar
- 88.Kiely P, Ward K, Bellemore CM, Briody J, Cowell CT, Little DG. Bisphosphonate rescue in distraction osteogenesis: a case series. J Pediatr Orthop. 2007;27(4):467–71.CrossRefPubMedGoogle Scholar
- 89.Kuzyk PR, Schemitsch EH. The science of electrical stimulation therapy for fracture healing. Indian J Orthop. 2009;43(2):127–31.CrossRefPubMedPubMedCentralGoogle Scholar
- 90.Korenstein R, Somjen D, Fischler H, Binderman I. Capacitative pulsed electric stimulation of bone cells. Induction of cyclic-AMP changes and DNA synthesis. Biochim Biophys Acta. 1984;803(4):302–7.CrossRefPubMedGoogle Scholar
- 91.Mollon B, da Silva V, Busse JW, Einhorn TA, Bhandari M. Electrical stimulation for long-bone fracture-healing: a meta-analysis of randomized controlled trials. J Bone Joint Surg Am. 2008;90(11):2322–30.CrossRefPubMedGoogle Scholar
- 92.Pounder NM, Harrison AJ. Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics. 2008;48(4):330–8.CrossRefPubMedGoogle Scholar
- 93.Schandelmaier S, Kaushal A, Lytvyn L, Heels-Ansdell D, Siemieniuk RA, Agoritsas T, Guyatt GH, Vandvik PO, Couban R, Mollon B, Busse JW. Low intensity pulsed ultrasound for bone healing: systematic review of randomized controlled trials. BMJ. 2017;356:j656.PubMedPubMedCentralGoogle Scholar
- 94.Vulpiani MC, Vetrano M, Conforti F, Minutolo L, Trischitta D, Furia JP, Ferretti A. Effects of extracorporeal shock wave therapy on fracture nonunions. Am J Orthop (Belle Mead NJ). 2012;41(9):E122–7.Google Scholar
- 95.Zelle BA, Gollwitzer H, Zlowodzki M, Bühren V. Extracorporeal shock wave therapy: current evidence. J Orthop Trauma. 2010;24(Suppl 1):S66–70.CrossRefPubMedGoogle Scholar
Copyright information
© Springer International Publishing AG 2018