Advertisement

Factors Influencing Consumer’s Behavioral Intention to Adopt IRCTC Connect Mobile Application

  • Ganesh P. SahuEmail author
  • Monika Singh
Conference paper
  • 2k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10595)

Abstract

Indian Railway Catering and Tourism Corporation Ltd. (IRCTC) launched “IRCTC Connect” mobile application (app) for different mobile platforms for booking/cancellation tickets, but the app usage rate is very low in comparison to IRCTC website and Passenger Reservation System (PRS). This indicates a gap between implementation and adaption of IRCTC Connect. This paper explores the factors influencing the consumer’s behavioral intention to use IRCTC Connect by adapting Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model. Regression analysis is used to analyze total 159 valid responses, collected through survey at MNNIT campus Allahabad, India. The findings of the study illustrate that only three factors Social Influence, Price Value and Habit of UTAUT2 model are significantly influencing the adoption of IRCTC Connect with adjusted R-Square value 0.699. This study will facilitate IRCTC Connect developers to encompass better understanding on consumers’ desires and intention and encourages researchers in this area for longitudinal observation in different backgrounds.

Keywords

IRCTC apps IRCTC mobile application IRCTC Connect UTAUT2 Determinants of consumer’s behavior intention m-governance 

References

  1. 1.
    Abu-Shanab, E.A.: Education level as a technology adoption moderator. In: 2011 3rd International Conference on Computer Research and Development (ICCRD), vol. 1, pp. 324–328. IEEE (2011)Google Scholar
  2. 2.
    Ajzen, I., Fishbein, M.: Understanding Attitudes and Predicting Social Behavior. Prentice-Hall, Englewood Cliffs (1980)Google Scholar
  3. 3.
    Antovski, L., Gusev, M.: M-government framework. In: Proceedings EURO mGov, 10–12 (2005)Google Scholar
  4. 4.
    Bigne, E., Ruiz, C., Sanz, S.: The impact of internet user shopping patterns and demographics on consumer mobile buying behaviour. J. Electron. Commerce Res. 6(3), 193 (2005)Google Scholar
  5. 5.
    Brasel, S.A., Gips, J.: Interface psychology: touchscreens change attribute importance, decision criteria, and behavior in online choice. Cyberpsychol. Behav. Soc. Netw. 18(9), 534–538 (2015)CrossRefGoogle Scholar
  6. 6.
    Brown, S.A., Venkatesh, V.: Model of adoption of technology in households: a baseline model test and extension incorporating household life cycle. MIS Q. 29, 399–426 (2005)CrossRefGoogle Scholar
  7. 7.
    Chang, C.C., Yan, C.F., Tseng, J.S.: Perceived convenience in an extended technology acceptance model: mobile technology and English learning for college students. Australas. J. Educ. Technol. 28(5), 809–826 (2012)CrossRefGoogle Scholar
  8. 8.
    Chong, A.Y.L.: Predicting m-commerce adoption determinants: a neural network approach. Expert Syst. Appl. 40(2), 523–530 (2013)CrossRefGoogle Scholar
  9. 9.
    Chuang, Y.F.: Pull-and-suck effects in Taiwan mobile phone subscribers switching intentions. Telecommun. Policy 35(2), 128–140 (2011)CrossRefGoogle Scholar
  10. 10.
    Crabbe, M., Standing, C., Standing, S., Karjaluoto, H.: An adoption model for mobile banking in Ghana. Int. J. Mobile Commun. 7(5), 515–543 (2009)CrossRefGoogle Scholar
  11. 11.
    CRIS: Progress of projects in CRIS. STATUS OF PROJECTS AT A GLANCE, New Delhi, India, January 2016. http://cris.org.in/CRIS/PDF/Progress_of_IT_projects.pdf. Accessed 29 Jan 2016
  12. 12.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13, 319–340 (1989)CrossRefGoogle Scholar
  13. 13.
    Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a comparison of two theoretical models. Manage. Sci. 35(8), 982–1003 (1989)CrossRefGoogle Scholar
  14. 14.
    Dodds, W.B., Monroe, K.B., Grewal, D.: Effects of price, brand, and store information on buyers’ product evaluations. J. Mark. Res. 28, 307–319 (1991)CrossRefGoogle Scholar
  15. 15.
    Dodds, W.K., Priscu, J.C.: An inexpensive device for sampling large volumes of lake water from discrete depths. Freshw. Biol. 20(1), 113–115 (1988)CrossRefGoogle Scholar
  16. 16.
    Gu, J.C., Lee, S.C., Suh, Y.H.: Determinants of behavioral intention to mobile banking. Expert Syst. Appl. 36(9), 11605–11616 (2009)CrossRefGoogle Scholar
  17. 17.
    Hew, J.J., Lee, V.H., Ooi, K.B., Wei, J.: What catalyses mobile apps usage intention: an empirical analysis. Ind. Manag. Data Syst. 115(7), 1269–1291 (2015)CrossRefGoogle Scholar
  18. 18.
    IAMAI: Internet and Mobile Association of India 11th Annual Report 2014-15. Dr. Subho Ray on behalf of IAMAI, New Delhi, September 2015Google Scholar
  19. 19.
    IRCTC: IRCTC 16 Annual Report 2014-2015. 22. Vijaylakshmi Printing Works Pvt. Ltd., New Delhi, India, 9 July 2015. Accessed 23 Jan 2016Google Scholar
  20. 20.
    irctc.com.: IRCTC: A progress profile (2002). http://irctc.com/Company_Profile.html. Accessed Sunday Jan 2016
  21. 21.
    Islam, R., Islam, R., Mazumder, T.: Mobile application and its global impact. Int. J. Eng. Technol. IJET-IJENS 10(6), 72–78 (2010)Google Scholar
  22. 22.
    Kailasam, R.: m-Governance… Leveraging Mobile Technology to extend the reach of e-Governance. In: Proceedings of the TRAI Conference on Mobile Applications for Inclusive Growth and Sustainable Development (2010)Google Scholar
  23. 23.
    Kang, S.: Factors influencing intention of mobile application use. Int. J. Mobile Commun. 12(4), 360–379 (2014)CrossRefGoogle Scholar
  24. 24.
    Kapoor, K.K., Dwivedi, Y.K., Williams, M.D.: IRCTC mobile ticketing adoption in an Indian context. Int. J. Indian Cult. Bus. Manage. 11(2), 155–183 (2015)CrossRefGoogle Scholar
  25. 25.
    Kapoor, K.K., Dwivedi, Y.K., Williams, M.D.: Empirical examination of the role of three sets of innovation attributes for determining adoption of IRCTC mobile ticketing service. Inf. Syst. Manage. 32(2), 153–173 (2015)CrossRefGoogle Scholar
  26. 26.
    Lewis, K.N., Palmer, A., Moll, A.: Predicting young consumer’s take up of mobile banking services. Int. J. Bank Mark. 28(5), 410–432 (2010)CrossRefGoogle Scholar
  27. 27.
    Leong, L.Y., Ooi, K.B., Chong, A.Y.L., Lin, B.: Modeling the stimulators of the behavioral intention to use mobile entertainment: does gender really matter? Comput. Hum. Behav. 29(5), 2109–2121 (2013)CrossRefGoogle Scholar
  28. 28.
    Li, H., Kuo, C., Rusell, M.G.: The impact of perceived channel utilities, shopping orientations, and demographics on the consumer’s online buying behavior. J. Comput.‐Mediated Commun. 5(2) (1999)Google Scholar
  29. 29.
    Luo, X., Li, H., Zhang, J., Shim, J.P.: Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: an empirical study of mobile banking services. Decis. Support Syst. 49(2), 222–234 (2010)CrossRefGoogle Scholar
  30. 30.
    Melone, N.P.: A theoretical assessment of the user-satisfaction construct in information systems research. Manage. Sci. 36(1), 76–91 (1990)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Mobile Seva: Mobile Seva Appstore, January 2016. https://apps.mgov.gov.in/liveapp.do. Accessed 25 Jan 2016
  32. 32.
    Moore, G.C., Benbasat, I.: Development of an instrument to measure the perceptions of adopting an information technology innovation. Inf. Syst. Res. 2(3), 192–222 (1991)CrossRefGoogle Scholar
  33. 33.
    MyGov: MyGov.in. https://mygov.in/overview/. Accessed 25 Jan 2016
  34. 34.
    mytrainstatus.com: IRCTC Makes 35 seconds to Wait to Book Tickets, January 2016. https://mytrainstatus.com/blog/irctc-makes-35-seconds-to-wait-to-book-tickets/. Accessed 28 Jan 2016
  35. 35.
    Nikou, S., Bouwman, H.: Ubiquitous use of mobile social network services. Telematics Inform. 31(3), 422–433 (2014)CrossRefGoogle Scholar
  36. 36.
    Oechslein, O., Fleischmann, M., Hess, T.: An application of UTAUT2 on social recommender systems: incorporating social information for performance expectancy. In: 2014 47th Hawaii International Conference on System Sciences (HICSS), pp. 3297–3306. IEEE (2014)Google Scholar
  37. 37.
    Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., Pahnila, S.: Consumer acceptance of online banking: an extension of the technology acceptance model. Internet Res. 14(3), 224–235 (2004)CrossRefGoogle Scholar
  38. 38.
    Pynoo, B., Devolder, P., Tondeur, J., Van Braak, J., Duyck, W., Duyck, P.: Predicting secondary school teachers’ acceptance and use of a digital learning environment: a cross-sectional study. Comput. Hum. Behav. 27(1), 568–575 (2011)CrossRefGoogle Scholar
  39. 39.
    Raman, A., Don, Y.: Preservice teachers’ acceptance of learning management software: an application of the UTAUT2 Model. Int. Educ. Stud. 6(7), 157 (2013)CrossRefGoogle Scholar
  40. 40.
    Reese Bomhold, C.: Educational use of smart phone technology: a survey of mobile phone application use by undergraduate university students. Program 47(4), 424–436 (2013)CrossRefGoogle Scholar
  41. 41.
    Rogers, E.M.: Diffusion of Innovations: modifications of a model for telecommunications. Die Diffusion von Innovationen in der Telekommunikation 17, 25–38 (1995)CrossRefGoogle Scholar
  42. 42.
    Rogers, E.M.: Diffusion of Innovations, 5th edn. The Free Press, New York (2003)Google Scholar
  43. 43.
    Sahney, S., Ghosh, K., Shrivastava, A.: “Buyer’s motivation” for online buying: an empirical case of railway e-ticketing in Indian context. J. Asia Bus. Stud. 8(1), 43–64 (2013)CrossRefGoogle Scholar
  44. 44.
    Sahney, S., Ghosh, K., Shrivastava, A: Conceptualizing consumer “trust” in online buying behaviour: an empirical inquiry and model development in Indian context. J. Asia Bus. Stud. 7(3), 278–298 (2013b). http://dx.doi.org/10.1108/JABS-Jul-2011-0038
  45. 45.
    Taylor, S., Todd, P.A.: Understanding information technology usage: a test of competing models. Inf. Syst. Res. 6(2), 144–176 (1995)CrossRefGoogle Scholar
  46. 46.
    Thompson, R.L., Higgins, C.A., Howell, J.M.: Personal computing: toward a conceptual model of utilization. MIS Q. 15, 125–143 (1991)CrossRefGoogle Scholar
  47. 47.
    Tornatzky, L.G., Klein, K.J.: Innovation characteristics and innovation adoption-implementation: a meta-analysis of findings. IEEE Trans. Eng. Manage. 1, 28–45 (1982)CrossRefGoogle Scholar
  48. 48.
    TRAI: Telecom regulatory authority of India. TRAI, Delhi (2015)Google Scholar
  49. 49.
    Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. Manage. Sci. 46(2), 186–204 (2000)CrossRefGoogle Scholar
  50. 50.
    Venkatesh, V., Morris, M.G.: Why don’t men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS Q. 24, 115–139 (2000)CrossRefGoogle Scholar
  51. 51.
    Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q. 27, 425–478 (2003)CrossRefGoogle Scholar
  52. 52.
    Venkatesh, V., Thong, J.Y., Xu, X.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q. 36(1), 157–178 (2003)CrossRefGoogle Scholar
  53. 53.
    Yahya, M., Nadzar, F., Masrek, N., Rahman, B.A.: Determinants of UTAUT in measuring user acceptance of e-Syariah portal in syariah courts in Malaysia. In: The 2nd International Research Symposium in Service Management Yogyakarta, Indonesia, July 2011Google Scholar
  54. 54.
    Yang, K.C.: Exploring factors affecting the adoption of mobile commerce in Singapore. Telematics Inform. 22(3), 257–277 (2005)CrossRefGoogle Scholar
  55. 55.
    Zhou, T., Lu, Y., Wang, B.: Integrating TTF and UTAUT to explain mobile banking user adoption. Comput. Hum. Behav. 26(4), 760–767 (2010)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Motilal Nehru National Institute of Technology AllahabadAllahabadIndia

Personalised recommendations