Advertisement

Towards the Implementation of a New Multigrid Solver in the DNS Code FS3D for Simulations of Shear-Thinning Jet Break-Up at Higher Reynolds Numbers

  • Moritz Ertl
  • Jonathan Reutzsch
  • Arne Nägel
  • Gabriel Wittum
  • Bernhard Weigand
Conference paper

Abstract

Liquid jet break-up appears in many technical applications, as well as in nature. It consists of complex physical processes, which happen on very small scales in space and time. This makes them hard to capture by experimental methods; and therefore a prime subject for numerical investigations. The state-of-the-art approach combines the Volume of Fluid (VOF) method with Direct Numerical Simulations (DNS) as employed in the ITLR in-house code Free Surface 3D (FS3D). The simulation of these jets is dependent on very fine grids, with most of the computational costs incurred by solving the Pressure Poisson Equation. In order to simulate larger computational domains, we tried to improve the performance of FS3D by the implementation of a new multigrid solver. For this we selected the solver contained in the UG4 package developed by the Goethe Center for Scientific Computing at the University of Frankfurt. We will show simulations of the primary break-up of shear-thinning liquid jets and explain why larger computational domains are necessary. Results are preliminary. We demonstrate that the implementation of UG4 into FS3D provides a noticeable increase in weak scaling performance, while the change in strong scaling is yet detrimental. We will then discuss ways to further improve these results.

Notes

Acknowledgements

The authors kindly acknowledge the High Performance Computing Center Stuttgart (HLRS) for support and supply of computational time on the Cray XC40 platform under the Grant No. FS3D/11142 and the financial support by the Deutsche Forschungsgemeinschaft (DFG) for the Collaborative Research Center SFB-TRR75.

References

  1. 1.
    P. Beau, M. Funk, R. Lebas, F. Demoulin, Cavitation applying quasi-multiphase model to simulate atomization in diesel engines. SAE Technical Papers 01-0220 (2005)Google Scholar
  2. 2.
    J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface-tension. J. Comput. Phys. 100(2), 335–354 (1992)MathSciNetzbMATHGoogle Scholar
  3. 3.
    K. Eisenschmidt, M. Ertl, H. Gomaa, C. Kieffer-Roth, C. Meister, P. Rauschenberger, M. Reitzle, K. Schlottke, B. Weigand, Direct numerical simulations for multiphase flows: an overview of the multiphase code FS3D. J. Appl. Math. Comput. 272(2), 508–517 (2016) https://doi.org/10.1016/j.amc.2015.05.095 MathSciNetGoogle Scholar
  4. 4.
    M. Ertl, B. Weigand, Investigation of the influence of atmospheric pressure on the jet breakup of a shear thinning liquid with DNS, in ILASS 2014, Bremen (2014)Google Scholar
  5. 5.
    M. Ertl, B. Weigand, Analysis methods for direct numerical simulations of primary breakup of shear-thinning liquid jets. Atomization Sprays 27(4), 303–317 (2017)Google Scholar
  6. 6.
    M. Ertl, N. Roth, G. Brenn, H. Gomaa, B. Weigand, Simulations and experiments on shape oscillations of newtonian and non-Newtonian liquid droplets, in ILASS 2013 (2013), p. 7Google Scholar
  7. 7.
    M. Ertl, G. Karch, F. Sadlo, T. Ertl, B. Weigand, Investigation and visual analysis of direct simulations of quasi-steady primary break-up of shear thinning liquids, in Proceedings 9th International Conference on Multiphase Flow: ICMF 2016, Firenze (2016)Google Scholar
  8. 8.
    U. Fritsching, Process-Spray: Functional Particles Produced in Spray Processes (Springer, Cham, 2016)Google Scholar
  9. 9.
    C. Galbiati, M. Ertl, S. Tonini, G.E. Cossali, B. Weigand, DNS investigation of the primary breakup in a conical swirled jet, in High Performance Computing in Science and Engineering’15 Transactions of the High Performance Computing Center, Stuttgart (HLRS) (Springer, Cham, 2016), pp. 333–347Google Scholar
  10. 10.
    H. Gomaa, I. Stotz, M. Sievers, G. Lamanna, B. Weigand, Preliminary investigation on diesel droplet impact on oil wallfilms in diesel engines, in ILASS – Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems, Estoril, September 2011Google Scholar
  11. 11.
    F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)MathSciNetzbMATHGoogle Scholar
  12. 12.
    J. Hernández, J. López, P. Gómez, C. Zanzi, F. Faura, A new volume of fluid method in three dimensions—part I: multidimensional advection method with face-matched flux polyhedra. Int. J. Numer. Methods Fluids 58(8), 897–921 (2008).  https://doi.org/https://doi.org/10.1002/fld.1776 zbMATHGoogle Scholar
  13. 13.
    M. Herrmann, A dual-scale les subgrid model for turbulent liquid/gas phase interface dynamics, in 13th Triennial International Conference on Liquid Atomization and Spray Systems ICLASS 2015, Tainan, August 23–27 (2015)Google Scholar
  14. 14.
    C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5 zbMATHGoogle Scholar
  15. 15.
    M. Klein, Direct numerical simulation of a spatially developing water sheet at moderate Reynolds number. Int. J. Heat Fluid Flow 26, 722–731 (2005)MathSciNetGoogle Scholar
  16. 16.
    B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys. 113(1), 134–147 (1994)MathSciNetzbMATHGoogle Scholar
  17. 17.
    A. Lakdawala, R. Thaokar, A. Sharma, Break-up of a non-newtonian jet injected downwards in a newtonian liquid. Sadhana Indian Acad. Sci. 40, 819–833 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    A.H. Lefebvre, Atomization and Sprays (Hemisphere, New York, 1989)Google Scholar
  19. 19.
    H. Li-Ping, Z. Meng-Zheng, D. Qing, L. Ning, X. Zhen-Yan, Large eddy simulation of atomization process of non-newtonian liquid jet. Adv. Sci. Lett. 8, 285–290 (2012)Google Scholar
  20. 20.
    S.P. Lin, R.D. Reitz, Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30, 85–105 (1998)MathSciNetzbMATHGoogle Scholar
  21. 21.
    C.D. Munz, T. Westermann, Numerische Behandlung gewöhnlicher und partieller Differenzialgleichungen (Springer, Berlin, 2006). ISBN 978-3-540-29867-3zbMATHGoogle Scholar
  22. 22.
    Y. Pan, H. Suga, A numerical study on the breakup process of laminar liquid jets into a gas. Phys. Fluids 18, 052101 (2006)Google Scholar
  23. 23.
    S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228(16), 5838–5866 (2009). https://doi.org/10.1016/j.jcp.2009.04.042 MathSciNetzbMATHGoogle Scholar
  24. 24.
    P. Rauschenberger, B. Weigand, Direct numerical simulation of rigid bodies in multiphase flow within an Eulerian framework. J. Comput. Phys. 291, 238–253 (2015). https://doi.org/10.1016/j.jcp.2015.03.023 MathSciNetzbMATHGoogle Scholar
  25. 25.
    P. Rauschenberger, J. Schlottke, K. Eisenschmidt, B. Weigand, Direct numerical simulation of multiphase flow with rigid body motion in an Eulerian framework, in ILASS - Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems, Estoril (2011)Google Scholar
  26. 26.
    P. Rauschenberger, J. Schlottke, B. Weigand, A computation technique for rigid particle flows in an Eulerian framework using the multiphase DNS code FS3D, in High Performance Computing in Science and Engineering’11 Transactions of the High Performance Computing Center, Stuttgart (HLRS) (2011). https://doi.org/10.1007/978-3-642-23869-7_23 Google Scholar
  27. 27.
    S. Reiter, A. Vogel, I. Heppner, M. Rupp, G. Wittum, A massively parallel geometric multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. 16(4), 151–164 (2013). https://doi.org/10.1007/s00791-014-0231-x zbMATHGoogle Scholar
  28. 28.
    M. Reitzle, C. Kieffer-Roth, H. Garcke, B. Weigand, A volume-of-fluid method for three-dimensional hexagonal solidification processes. J. Comput. Phys. 339, 356–369 (2017). https://doi.org/10.1016/j.jcp.2017.03.001 MathSciNetGoogle Scholar
  29. 29.
    W.J. Rider, D.B. Kothe, Reconstructing volume tracking. J. Comput. Phys. 141(2), 112–152 (1998).  https://doi.org/https://doi.org/10.1006/jcph.1998.5906 MathSciNetzbMATHGoogle Scholar
  30. 30.
    M. Rieber, Numerische Modellierung der Dynamik freier Grenzflächen in Zweiphasenströmungen. Dissertation, Universität Stuttgart, 2004Google Scholar
  31. 31.
    M. Rieber, F. Graf, M. Hase, N. Roth, B. Weigand, Numerical simulation of moving spherical and strongly deformed droplets, in Proceedings ILASS-Europe (2000), pp. 1–6Google Scholar
  32. 32.
    N. Roth, J. Schlottke, J. Urban, B. Weigand, Simulations of droplet impact on cold wall without wetting, in ILASS (2008), pp. 1–7Google Scholar
  33. 33.
    N. Roth, H. Gomaa, B. Weigand, Droplet collisions at high weber numbers: experiments and numerical simulations, in Proceedings of DIPSI Workshop 2010 on Droplet Impact Phenomena & Spray Investigation, Bergamo (2010)Google Scholar
  34. 34.
    W. Sander, B. Weigand, Direct numerical simulation of primary breakup phenomena in liquid sheets, in High-Performance Computing in Science and Engineering 2006: Transactions of the High Performance Computing Center Stuttgart (HLRS) (Springer, Berlin, 2006), pp. 223–236Google Scholar
  35. 35.
    J. Shinjo, A. Umemura, Surface instability and primary atomization characteristics of straight liquid jet sprays. Int. J. Multiphase Flow 37, 1294–1304 (2011)Google Scholar
  36. 36.
    G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)MathSciNetzbMATHGoogle Scholar
  37. 37.
    R.I. Tanner, Engineering Rheology. Oxford Engineering Science Series, 2nd edn. (Oxford University Press, Oxford, 2002)Google Scholar
  38. 38.
    A. Vogel, S. Reiter, M. Rupp, A. Nägel, G. Wittum, UG4: a novel flexible software system for simulating PDE based models on high performance computers. Comput. Vis. Sci. 16(4), 165–179 (2013). https://doi.org/10.1007/s00791-014-0232-9 zbMATHGoogle Scholar
  39. 39.
    A. Vogel, A. Calotoiu, A. Strubem, S. Reiter, A. Nägel, F. Wolf, G. Wittum, 10,000 performance models per minute – scalability of the UG4 simulation framework, in Euro-Par 2015, ed. by J. Träff, S. Hunold, F. Versaci, vol. 9233 (2015), pp. 519–531. https://doi.org/10.1007/978-3-662-48096-0
  40. 40.
    A. Vogel, A. Calotoiu, A. Nägel, S. Reiter, A. Strube, G. Wittum, F. Wolf, Automated performance modeling of the UG4 simulation framework, in Software for Exascale Computing - SPPEXA 2013–2015, ed. by H. Bungartz, P. Neumann, W.E. Nagel. Lecture Notes in Computational Science and Engineering, vol. 113 (Springer, Cham, 2016), pp. 467–481. https://doi.org/10.1007/978-3-319-40528-5_21
  41. 41.
    H. Weking, J. Schlottke, M. Boger, C.D. Munz, B. Weigand, DNS of rising bubbles using VOF and balanced force surface tension, in High Performance Computing on Vector Systems (Springer, Berlin, 2010)Google Scholar
  42. 42.
    C. Zhu, M. Ertl, B. Weigand, Effect of Reynolds number on the primary jet breakup of inelastic non-newtonian fluids from a duplex nozzle using direct numerical simulation (DNS), in ILASS 2013 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Moritz Ertl
    • 1
  • Jonathan Reutzsch
    • 1
  • Arne Nägel
    • 2
  • Gabriel Wittum
    • 2
  • Bernhard Weigand
    • 1
  1. 1.Institut für Thermodynamik der Luft- und RaumfahrtUniversität StuttgartStuttgartGermany
  2. 2.Goethe-Zentrum für Wissenschaftliches RechnenGoethe-Universität Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations