Introduction of a New Full-Scale Open Cooling Version of the DrivAer Generic Car Model

  • Burkhard Hupertz
  • Lothar Krüger
  • Karel Chalupa
  • Neil Lewington
  • Brendan Luneman
  • Pedro Costa
  • Timo Kuthada
  • Christopher Collin
Conference paper

Abstract

Since the introduction of the generic aerodynamic research model DrivAer, an increasing amount of aerodynamic research and aerodynamic CAE method development activities have been based on this simplified generic car body. Due to the OpenSource nature of the model it has not only been used by academia but also by several automotive OEMs and CAE software developers. The DrivAer model has delivered high quality experimental data to permit validation of existing aerodynamic CAE capabilities and to accelerate the development of new more sophisticated numerical methods.

Vehicle aerodynamic performance is significantly influenced by the airflow through the engine bay. The current, closed cooling version of the DrivAer does not enable an assessment of the influence of the cooling airflow on the vehicle’s aerodynamic characteristics.

A new open cooling version of the DrivAer model is proposed to further expand the usability of the overall DrivAer concept. Beyond an extended usage in vehicle aerodynamics the layout of the model will allow for investigations related to powertrain cooling, heat protection, brake cooling and wind noise.

This paper focuses on the conceptual layout of the Open Cooling DrivAer model and will explain the instrumentation concept of the physical test model. Furthermore initial wind tunnel test data of the baseline configuration will be presented.

Abbreviations

CC

Closed Cooling

CCDA

Closed Cooling DrivAer

GESS

Ground Effect Simulation System

IDDES

Improved Delayed Detached Eddy Simulation

LBM

Lattice Boltzmann Method

OC

Open Cooling

OCDA

Open Cooling DrivAer

RANS

Reynolds-averaged Navier-Stokes

References

  1. 1.
    Ahmed, S., Ramm, G., Faltin, G.: Some salient features of the time-averaged ground vehicle wake. SAE Technical Paper 840300 (1984).  https://doi.org/10.4271/840300
  2. 2.
    Closed-Test-Section Wind Tunnel Blockage Corrections for Road Vehicles. SAE Report SP-1176, January 1996. ISBN: 1-56091-815-2Google Scholar
  3. 3.
    Windsor, S.: The effect of rear end shape an road vehicle aerodynamic drag. C427/6/031, IMechE Autotech, UK (1991)Google Scholar
  4. 4.
    Le Good, G., Garry, K.: On the use of reference models in automotive aerodynamics. SAE Technical Paper 2004-01-1308 (2004).  https://doi.org/10.4271/2004-01-1308
  5. 5.
    Heft, A., Indinger, T., Adams, N.: Introduction of a new realistic generic car model for aerodynamic investigations. SAE Technical Paper 2012-01-0168 (2012).  https://doi.org/10.4271/2012-01-0168
  6. 6.
    Theissen, P., Wojciak, J., Heuler, K., Demuth, R., et al.: Experimental investigation of unsteady vehicle aerodynamics under time-dependent flow conditions - Part 1. SAE Technical Paper 2011-01-0177 (2011).  https://doi.org/10.4271/2011-01-0177
  7. 7.
    Wojciak, J., Theissen, P., Heuler, K., Indinger, T., et al.: Experimental investigation of unsteady vehicle aerodynamics under time-dependent flow conditions – Part 2. SAE Technical Paper 2011-01-0164 (2011).  https://doi.org/10.4271/2011-01-0164
  8. 8.
    Mack, S., Indinger, T., Adams, N., Unterlechner, P.: The ground simulation upgrade of the large wind tunnel at the Technische Universität München. SAE Technical Paper 2012-01-0299 (2012).  https://doi.org/10.4271/2012-01-0299
  9. 9.
    Wojciak, J., Schnepf, B., Indinger, T., Adams, N.: Study on the capability of an open source CFD software for unsteady vehicle aerodynamics. SAE Int. J. Commer. Veh. 5(1), 196–207 (2012).  https://doi.org/10.4271/2012-01-0585CrossRefGoogle Scholar
  10. 10.
    Collin, C., Mack, S., Indinger, T., Mueller, J.: A numerical and experimental evaluation of open jet wind tunnel interferences using the DrivAer reference model. SAE Int. J. Passeng. Cars Mech. Syst. 9(2), 657–679 (2016).  https://doi.org/10.4271/2016-01-1597CrossRefGoogle Scholar
  11. 11.
    Nayeri, C., Strangfeld, C., Wieser, D., Abbassi, M.R., et al.: Experimental methods, unsteadiness and flow control in vehicle aerodynamics. In: IQPC Aerodynamics Conference, Berlin, 28th Nov 2012Google Scholar
  12. 12.
    Strangfeld, C., Wieser, D., Schmidt, H., Woszidlo, R., et al.: Experimental study of baseline flow characteristics for the realistic car model DrivAer. SAE Technical Paper 2013-01-1251 (2013).  https://doi.org/10.4271/2013-01-1251
  13. 13.
    Wieser, D., Lang, H., Nayeri, C., Paschereit, C.: Manipulation of the aerodynamic behavior of the driveAer model with fluidic oscillators. SAE Int. J. Passeng. Cars Mech. Syst. 8(2), 687–702 (2015).  https://doi.org/10.4271/2015-01-1540CrossRefGoogle Scholar
  14. 14.
    Stoll, D., Kuthada, T., Wiedemann, J., Schütz, T: Unsteady aerodynamic vehicle properties of the driveAer model in the IVK model scale wind tunnel. In: FKFS Conference on Progress in Vehicle Aerodynamics and Thermal Management, Stuttgart (2015)Google Scholar
  15. 15.
    Stoll, D., Schoenleber, C., Wittmeier, F., Kuthada, T., et al.: Investigation of aerodynamic drag in turbulent flow conditions. SAE Int. J. Passeng. Cars Mech. Syst. 9(2), 733–742 (2016).  https://doi.org/10.4271/2016-01-1605CrossRefGoogle Scholar
  16. 16.
    Stoll, D., Kuthada, T., Wiedemann, J.: Experimental and numerical investigation of aerodynamic drag in turbulent flow conditions. In: IMechE International Conference on Vehicle Aerodynamics, Coventry, 21–22 Sept 2016Google Scholar
  17. 17.
    Guilmineau, E.: Numerical simulations of flow around a realistic generic car model. SAE Int. J. Passeng. Cars Mech. Syst. 7(2), 646–653 (2014).  https://doi.org/10.4271/2014-01-0607CrossRefGoogle Scholar
  18. 18.
    Jakirlic, S., Kutej, L., Basara, B., Tropea, C.: Computational study of the aerodynamics of a realistic car model by means of RANS and hybrid RANS/LES approaches. SAE Int. J. Passeng. Cars Mech. Syst. 7(2), 559–574 (2014).  https://doi.org/10.4271/2014-01-0594CrossRefGoogle Scholar
  19. 19.
    Jakirlic, S., Kutej, L., Hanssmann, D., Basara, B. et al.: Eddy-resolving simulations of the notchback ‘DrivAer’ model: influence of underbody geometry and wheels rotation on aerodynamic behaviour. SAE Technical Paper 2016-01-1602 (2016).  https://doi.org/10.4271/2016-01-1602
  20. 20.
    Jungmann, J., Schütz, T., Tropea, C., Jakirlic, S.: Flow past a DrivAer body in a scaled wind tunnel: computational study by a reference to a complementary experiment. In: IMechE International Conference on Vehicle Aerodynamics, Coventry, 21–22 Sept 2016Google Scholar
  21. 21.
    Soares, R., Garry, K., Holt, J.: Comparison of the far-field aerodynamic wake development for three DrivAer model configurations using a cost-effective RANS simulation. SAE Technical Paper 2017-01-1514 (2017).  https://doi.org/10.4271/2017-01-1514
  22. 22.
    Simmonds, N., Pitman, J., Tsoutsanis, P., Jenkins, K. et al.: Complete body aerodynamic study of three vehicles. SAE Technical Paper 2017-01-1529 (2017).  https://doi.org/10.4271/2017-01-1529
  23. 23.
    Haag, L., Kiewat, M., Indinger, T., Blacha, T.: Numerical and experimental investigations of rotating wheel aerodynamics on the DrivAer model with engine bay flow. In: Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting, FEDSM 2017-69305Google Scholar
  24. 24.
    Le Good, G., Annetts, I., Quilter, S., Cross, M., Lewis, R.: The design of systematic add-on configuration changes for the DrivAer body and their aerodynamic characteristics. In: IMechE International Conference on Vehicle Aerodynamics, Coventry, 21–22. Sept 2016Google Scholar
  25. 25.
    Barnard, R.H.: Theoretical and experimental investigation of the aerodynamic drag due to automotive cooling systems. Proc. Inst. Mech. Eng. Part D: J. Autom. Eng. 214(8), 919–927 (2000)CrossRefGoogle Scholar
  26. 26.
    Kuthada, T., Pfannkuchen, E., Wiedemann, J.: Evaluation of cooling air drag on a reference body. In: 5th MIRA International Vehicle Aerodynamics Conference. Warwick, UK (2004)Google Scholar
  27. 27.
    Kuthada, T.: Die optimierung von Pkw-Kühlluftführungs- systemen unter dem Einfluss moderner Bodensimulations- techniken; Dissertation. Universität Stuttgart (2006) ISBN: 3-8169-2664-9Google Scholar
  28. 28.
    Cogotti, A.: A parametric study on the ground effect of a simplified car model. SAE Technical Paper 980031 (1998).  https://doi.org/10.4271/980031
  29. 29.
    Baeder, D., Indinger, T., Adams, N., Decker, F.: Comparison of numerical simulations with experiments of bluff bodies including under-hood flow. SAE Technical Paper 2011-01-0171 (2011).  https://doi.org/10.4271/2011-01-0171
  30. 30.
    Fares, E.; Jelic, S.; Kuthada, T., Schröck, D.: Lattice boltzmann thermal flow simulation and measurements of a modified SAE model with heated plug FEDSM2006-98467. ASME (2006)Google Scholar
  31. 31.
    Kuthada, T., Wiedemann, J.: Investigations in a cooling air flow system under the influence of road simulation. SAE Technical Paper 2008-01-0796 (2008).  https://doi.org/10.4271/2008-01-0796
  32. 32.
    Wittmeier, F., Kuthada, T.: Open grille DrivAer model - first results. SAE Int. J. Passeng. Cars Mech. Syst. 8(1), 252–260 (2015).  https://doi.org/10.4271/2015-01-1553CrossRefGoogle Scholar
  33. 33.
    Wittmeier, F.: The recent upgrade of the model scale wind tunnel of university of Stuttgart. SAE Int. J. Passeng. Cars Mech. Syst. 10(1), 203–213 (2017).  https://doi.org/10.4271/2017-01-1527CrossRefGoogle Scholar
  34. 34.
    Kuthada, T., Wittmeier, F., Bock, B., Schoenleber, C., et al.: The effects of cooling air on the flow field around a vehicle. SAE Int. J. Passeng. Cars Mech. Syst. 9(2), 723–732 (2016).  https://doi.org/10.4271/2016-01-1603CrossRefGoogle Scholar
  35. 35.
    Kuthada, T.: A review of some cooling air flow measurement techniques for model scale, full scale and CFD. SAE Int. J. Passeng. Cars Mech. Syst. 6(1), 88–96 (2013).  https://doi.org/10.4271/2013-01-0598CrossRefGoogle Scholar
  36. 36.
    Cogotti, A.: The new moving ground system of the pininfarina wind tunnel. SAE Technical Paper 2007-01-1044 (2007).  https://doi.org/10.4271/2007-01-1044

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Burkhard Hupertz
    • 1
  • Lothar Krüger
    • 1
  • Karel Chalupa
    • 1
  • Neil Lewington
    • 2
  • Brendan Luneman
    • 2
  • Pedro Costa
    • 3
  • Timo Kuthada
    • 4
  • Christopher Collin
    • 5
  1. 1.Ford Werke GmbHCologneGermany
  2. 2.Ford Asia PacificCampbellfieldAustralia
  3. 3.Ford of South AmericaCamacariBrazil
  4. 4.Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren StuttgartStuttgartGermany
  5. 5.Institute of Aerodynamics and Fluid MechanicsTechnische Universität MünchenMunichGermany

Personalised recommendations