Cenozoic Uplift and Exhumation of the Frontal Cordillera Between 30° and 35° S and the Influence of the Subduction Dynamics in the Flat Slab Subduction Context, South Central Andes

  • Ana C. Lossada
  • Laura Giambiagi
  • Gregory Hoke
  • José Mescua
  • Julieta Suriano
  • Manuela Mazzitelli
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

This review explores the timing of uplift and exhumation of the Frontal Cordillera range in the South Central Andes between 30° and 35° S summing up the available published evidence up to present. In this segment of the Andes, the Frontal Cordillera straddles a transition from the Chilean–Pampean flat-slab segment to a normal subduction segment and exhibits remarkable along-strike variations in the amount of horizontal shortening, onset of Miocene deformation, and orogenic width, while mean elevations remain steady. None of these variations seem to correspond, in time or space, to the shift in the subduction dynamics; instead, we propose that they represent the expression of inherited features in the continental crust such as the presence of post-Triassic basins or paleo-relief.

Keywords

Frontal cordillera Exhumation Cenozoic contraction South Central Andes Flat slab 

Notes

Acknowledgements

Ana Lossada acknowledges the Tectonics Group—IANIGLA for the stimulating discussions. D. Yagupsky is thanked for a critical review of an early version of the manuscript, and the Chilean Geological and Mining Survey for the fieldwork facilities. This research was supported by a grant from the Argentine Agencia de Promoción Científica y Tecnológica (PICT 2011–1079) and an Argentine Presidential-Fulbright Fellowship in Science and Technology.

References

  1. Aguilar G, Riquelme R, Martinod J, Darrozes J (2013) Rol del clima y la tectónica en la evolución geomorfológica de los Andes Semiáridos chilenos entre los 27–32° S. Andean Geol 40(1):79–101Google Scholar
  2. Alarcón P, Pinto L (2015) Neogene erosion of the Andean Cordillera in the flat-slab segment as indicated by petrography and whole-rock geochemestry from the Manatiales Foreland Basin (32°–32°30′S). Tectonophysics 639:1–22CrossRefGoogle Scholar
  3. Allmendinger RW, Figueroa D, Snyder D, Beer C, Mpodozis C, Isacks BL (1990) Foreland shortening and crustal balancing in the andes at 30° S latitude. Tectonics 9:789–809CrossRefGoogle Scholar
  4. Alvarado P, Beck S, Zandt G (2007) Crustal structure of the south-central Andes Cordillera and backarc region from regional waveform modeling.Geophys J Inter 170:858–875Google Scholar
  5. Álvarez PP, Ramos VA (1999) The Mercedario rift system in the principal Cordillera of Argentina and Chile (32° SL). J South Am Earth Sci 12:17–31CrossRefGoogle Scholar
  6. Ammirati J-B, Pérez Luján S, Alvarado P, Beck S, Rocher S, Zandt G (2016) High-resolution images above the Pampean flat slab of Argentina (31–32° S) from local receiver functions: Implications on regional tectonics. Earth and Planet Sci Let 450:29–39CrossRefGoogle Scholar
  7. Baker S, Gosse J, McDonald E, Evenson E, Martínez O (2009) Quaternary history of the piedmont reach of Río Diamante, Argentina. J South Am Earth Sci 28:54–73CrossRefGoogle Scholar
  8. Baldi J, Ferrante R, Ferrante V, Martinez R (1984) Estructuras de bloques y su importancia petrolera en el ámbito Mendocino de la cuenca Neuquina. IX Cong Geol Arg, Bariloche 4:153–161Google Scholar
  9. Barazangi M, Isacks BL (1976) Spatial distribution of earth quakes and subduction of the Nazca plate beneath South America. Geol 4:606–692CrossRefGoogle Scholar
  10. Benavides-Caceres V (1999) Orogenic evolution of the Peruvian Andes; the Andean Cycle. In: Skinner, BJ (ed.) Geology and ore deposits of the Central Andes. Society of Economic Geologists, pp 61–10Google Scholar
  11. Bissig T, Lee JK, Clark AH, Heather KB (2001) The cenozoic history of volcanism and hydrothermal alteration in the central andean flat-slab region: new 40Ar-39Ar constraints from the El Indio–Pascua Au (-Ag, Cu) belt, 29° 20′–30° 30′ S. Int Geol Rev, 43(4):312–340Google Scholar
  12. Bissig T, Clark AH, Lee JK, Hodgson CJ (2002) Miocene landscape evolution and geomorphologic controls on epithermal processes in the El Indio-Pascua Au-Ag-Cu belt. Chile and Argentina. Economic Geol 97(5):971–996Google Scholar
  13. Borello A, Cuerda A (1968) Grupo Río Huaco (Triásico), San Juan. Com. Investig. Científicas la Prov. Buenos Aires 7:3–15Google Scholar
  14. Buelow E, Suriano J (2015) Evolution of the Neogene Cacheuta Basin: a record of orogenic exhumation and basin inversion in the South Central Andes. GSA MettingGoogle Scholar
  15. Cachill T, Isacks BL (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97:17503–17529CrossRefGoogle Scholar
  16. Caminos R (1964) Estratigrafía y tectónica del Espolón de la Carrera, Cordón del Plata, provincia de Mendoza. PhD Thesis, Universidad Nacional de Buenos Aires, p 145Google Scholar
  17. Caminos R (1965) Geología de la vertiente oriental del Cordón del Plata, Cordillera Frontal de Mendoza. Rev Asoc Geol Arg 20(3):351–392Google Scholar
  18. Casa AL (2005) Geología y neotectónica del piedemonte oriental del cordón del Plata en los alrededores de El Salto. Thesis degree, Universidad de Buenos Aires, 174 pGoogle Scholar
  19. Casa AL, Borgnia MM, Cortés JM (2010) Evidencias de deformación pleistocena en el sistema de falla de La Carrera (32º40′–33º15′LS), Cordillera Frontal de Mendoza. Rev Asoc Geol Arg 67:91–104Google Scholar
  20. Casa A, Cortés JM, Rapalini A (2011) Fallamiento activo y modifi cación del drenaje en el piedemonte del cordón del Carrizalito, Mendoza. XVIII Congreso Geológico Argentino (Neuquén) pp 712–713Google Scholar
  21. Cembrano J, Zentilli M, Grist A, Yáñez G (2003) Nuevas edades de trazas de fisión para Chile Central (30°–34° S): Implicancias en el alzamiento y exhuma-ción de los Andes desde el Cretácico. X Congreso Geológico Chileno (Concepción)Google Scholar
  22. Charrier R, Baeza O, Elgueta S, Flynn JJ, Gans P, Kay SM, Munoz N, Wyss AR, Zurita E (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33°–36° S). J South Am Earth Sci 15(1):117–139CrossRefGoogle Scholar
  23. Charrier R, Pinto L, Rodríguez M (2007) Tectonostratigraphic evolution of the Andean Orogen in Chile. In: Moreno T, Gibbons W (eds) The Geology of Chile. Geological Society, London, pp 21–114Google Scholar
  24. Coira B, Davidson J, Mpodozis C, Ramos V (1982) Tectonic and Magmatic Evolution of the Andes of Northern Argentina and Chile. Earth Sci Rev 18(3–4):303–332CrossRefGoogle Scholar
  25. Cortés JM (1993) El frente de la Cordillera Frontal y el extremo sur del valle de Uspallata, Mendoza. XII Cong Geol Arg (Mendoza), pp 168–178Google Scholar
  26. Cortes JM, Sruoga P (1998) Zonas de fractura cuaternarias y volcanismo asociado en el piedemonte de la Cordillera Frontal (34°30′S), Argentina. X Congreso Latinoamericano de Geologia (Buenos Aires) 2:116–121Google Scholar
  27. Cristallini EO, Ramos VA (2000) Thick-skinned and thin-skinned thrusting in the La Ramada fold and thrust belt: crustal evolution of the High Andes of San Juan, Argentina (32 SL). Tectonophysics 317(3):205–235CrossRefGoogle Scholar
  28. Cristallini E, Mosquera A, Ramos V (1995) Estructura de la Alta Cordillera de San Juan. Rev Asoc Geol Arg 49(1–2):165–183Google Scholar
  29. Fauqué L, Cortés JM, Folguera A, Etcheverría M (2000) Avalanchas de rocas asociadas a neotectónica en el valle del río Mendoza, al sur de Uspallata. Rev Asoc Geol Arg 55:419–423Google Scholar
  30. Folguera A, Etcheverria M, Pazos P, Giambiagi L, Cortés JM, Fauqué L, Fusari C, Rodríguez MF (2004) Descripción de la Hoja Geológica N° 3369–15 (Potrerillos). Carta Geologica de la República Argentina E. 1:100.000. Subsecretaría de Minería de la Nación, Dirección Nacional del Servicio Geológico, 262 pGoogle Scholar
  31. Fosdick JC, Carrapa B, Ortíz G (2015) Faulting and erosion in the Argentine Precordillera during changes in subduction regime: reconciling bedrock cooling and detrital records. Earth Planet Sci Lett 432:73–83CrossRefGoogle Scholar
  32. Fosdick JC, Reat EJ, Carrapa B, Ortiz G, Alvarado PM (2017) Retroarc basin reorganization and aridification during paleogene uplift of the southern central andes. Tectonics, 36(3):493–514Google Scholar
  33. Gans CR, Beck SL, Zandt G, Gilbert H, Alvarado P, Anderson M, Linkimer L (2011) Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results. Geophys J Int 186(1):45–58CrossRefGoogle Scholar
  34. García VH, Casa A (2015) Quaternary tectonics and seismic potential of the Andean retrowedge at 33°–34° S. In: Sepúlveda SA, Giambiagi LB, Moreiras SM, Pinto L, Tunik M, Hoke G, Farías M (eds.) Geodynamic Processes in the Andes of Central Chile and Argentina. Geol Soc, London, Sp Publ 399:311–327Google Scholar
  35. Giambiagi LB (1999) Interpretación tectónica de los depósitos neógenos de la cuenca de antepaís del Alto Tunuyán, en la región del Río Palomares, cordillera principal de Mendoza. Rev Asoc Geol Argent 54:361–374Google Scholar
  36. Giambiagi L, Martinez AN (2008) Permo-Triassic oblique ex-tension in the Uspallata-Potrerillos area, western Argentina. J South Am Earth Sci 26:252–260CrossRefGoogle Scholar
  37. Giambiagi L, Ramos V, Godoy E, Alvarez PP, Orts S (2003) Cenozoic deformation and tectonic style of the Andes, between 33° and 34° south latitude. Tectonics 22(4):1041Google Scholar
  38. Giambiagi L, Mescua J, Bechis F, Martínez A, Folguera A (2011) Pre-Andean deformation of the Precordillera southern sector, Southern Central Andes. Geosphere 7:219–239CrossRefGoogle Scholar
  39. Giambiagi L, Mescua J, Bechis F, Tassara A, Hoke G (2012) Thrust belts of the Southern Central Andes: along strike variations in shortening, topography, crustal geometry and denudation. Geol Soc Am Bull 124(7–8):1339–1351CrossRefGoogle Scholar
  40. Giambiagi L, Álvarez PP, Godoy E, Polanco E (2014a) Modelo cinemático 3D e interpretación dinámica de estructuras en la región de El Elqui, Alta Cordillera de Chile Central (30° S). XIX Congreso Geológico Argentino, Córdoba, ArgentinaGoogle Scholar
  41. Giambiagi L, Mescua J, Heredia N, Farías P, García Sansegundo J, Fernández C, Stier S, Pérez D, Bechis F, Moreiras SM, Lossada A (2014b) Reactivation of Paleozoic structures during Cenozoic deformation in the Cordón del Plata and Southern Precordillera ranges (Mendoza, Argentina). J Iberian Geol 40(2):309–320Google Scholar
  42. Giambiagi L, Tassara A, Mescua J, Tunik M, Alvarez P, Godoy E, Hoke G, Pinto L, Spagnotto S, Porras H, Tapia F, Jara P, Bechis F, García V, Suriano J, Moreiras S, Pagano S (2015) Evolution of shallow and deep structures along the Maipo-Tunuyán transect (33°40º S): from the Pacific coast to the Andean foreland. In: Sepúlveda SA, Giambiagi LB, Moreiras SM, Pinto L, Tunik M, Hoke GD, Farías M (eds.) Geodynamic Processes in the Andes of Central Chile and Argentina. Geol Soc, Sp Publ 399:63–82Google Scholar
  43. Giambiagi L, Álvarez PP, Creixell C, Mardonez D, Murillo I, Velásquez R, Lossada A, Suriano J, Mescua J, Barrionuevo M (2017) Cenozoic shift from compression to strike-slip stress regime in the high Andes at 30°S, during the shallowing of the slab: implications for the El Indio/Tambo mineral district. TectonicsGoogle Scholar
  44. Groeber P (1938) Mineralogía y Geología. Espasa-Calpe, Argentina pp. 492Google Scholar
  45. Heredia N, Fernández LR, Gallastegui G, Busquets P, Colombo F (2002) Geological setting of the argentine frontal cordillera in the flat-slab segment (30° 00′–31° 30′ S latitude). J S Am Earth Sci 15(1):79–99Google Scholar
  46. Heredia N, Farías P, García Sansegundo J, Giambiagi L (2012) The basement of the Andean Frontal Cordillera in the Cordón del Plata (Mendoza, Argentina): geodynamic evolution. Andean Geol 39:242–257Google Scholar
  47. Hoke G, Giambiagi L, Garzione C, Mahoney B, Strecker M (2014) Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina. Earth Planet Sci Lett 406:153–164CrossRefGoogle Scholar
  48. Hoke G, Graber N, Mescua J, Giambiagi L, Fitzgerald P, Metcalf J (2015) Near pure surface uplift of the Argentine Frontal Cordillera: insights from (U-Th)/He thermochronometry and geomorphic analysis. In: Sepúlveda et al (eds) Geodynamic Processes in the Andes of Central Chile and Argentina, Geolog Soc of London Sp Publ 339Google Scholar
  49. Iglesia Llanos P (1995) Geología del area de Manantiales al este del cordón del Espinacito, Provincia de San Juan. Rev Asoc Geol Arg 50(1–4):195–211Google Scholar
  50. Irigoyen MV (1997) Magnetic polarity stratigraphy and geochronological constraints on the sequence of thrusting in the Principal and Frontal cordilleras and the Precordillera of the Argentine Central Andes (33° S latitude). PhD thesis, Carleton University, Ottawa pp 392Google Scholar
  51. Irigoyen MV, Villeneuve ME, Quigg F (1999) Calibration of a Neogene magnetostratigraphy by 40Ar-39Ar geochronology: The foreland-basin strata of northern Mendoza Province,Argentina. In Radiogenic age and isotopic studies: Report 12, Geological Survey of Canada, Current research, 1999-F: 27–41Google Scholar
  52. Irigoyen MV, Buchan KL, Brown RL (2000) Magnetostratigraphy of Neogene Andean foreland-basin strata, lat 33° S, Mendoza province, Argentina. GSA Bull 112:803–816CrossRefGoogle Scholar
  53. Isacks B (1988) Uplift of the Central Andean Plateau and bending of the Bolvian Orocline. J Geophys Res 93:3211–3231CrossRefGoogle Scholar
  54. Jara P, Likerman J, Winocur D, Ghiglione M, Cristalini E, Pinto L, Charrier R (2015) Role of basin width variation in tectonic inversion: insight from analogue modeling and implications for the tectonic inversion of the Abanico Basin, 32°–34° S, Central Andes. In: Sepúlveda et al (eds) Geodynamic Processes in the Andes of Central Chile and Argentina, Geolog Soc of London Sp Publ 339: 83–107Google Scholar
  55. Jordan T, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca Plate. Geol Soc Am Bull 94:341–361CrossRefGoogle Scholar
  56. Jordan TE, Allmendinger RW, Damanti JF, Drake RE (1993) Chronology of motion in a complete thrust belt: the precordillera, 30-31°S, andes mountains. J Geol 101(2):135–156Google Scholar
  57. Jordan TE, Tamm V, Figueroa G, Flemings PB, Richards D, Tabbutt K, Cheatham T (1996) Development of the Miocene Manantiales foreland basin, Principal Cordillera, San Juan. Argentina. Andean Geol 23(1):43–79Google Scholar
  58. Kay SM, Maksaev V, Moscoso R, Mpodozis C, Nasi C, Gordillo CE (1987) Tertiary Andean magmatism in Chile and Argentina between 28° S and 33° S: correlation of magmatic chemistry with a changing Benioff zone. J South Am Earth Sci 1(1):21–38CrossRefGoogle Scholar
  59. Kay S, Mpodozis C (2002) Magmatism as a probe to the neogene shallowing of the nazca plate beneath the modern chilean flat-slab. J South AM Earth Sci 15(1):39–57Google Scholar
  60. Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol Soc Am Bull 117:67–88CrossRefGoogle Scholar
  61. Kozloswki E, Cruz C, Condat P, Manceda R (1989) Interpretación del fallamiento de bajo ángulo en los sedimentos cretácicos del río Diamante. Pcia. de Mendoza. I Cong Nac Expl Hidrocarburos, Mar del Plata 2:675–688Google Scholar
  62. Kozlowski E, Manceda R, Ramos V (1993) Estructura. In: Ramos V (ed.) Geologia y recusros naturales de Mendoza. XII Cong Geol Arg 1(18): 235–256Google Scholar
  63. Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425(6960):792–797CrossRefGoogle Scholar
  64. Levina M, Horton B, Fuentes F, Stockli D (2014) Cenozoic sedimentation and exhumation of the foreland basin system preserved in the Precordillera thrust belt (31–32° S), southern central Andes, Argentina. Tectonics 33:1659–1680CrossRefGoogle Scholar
  65. Limarino O, Net L, Gutierrez P, Barreda V, Caselli A, Ballent S (2000) Definicion litoestratigrafica de la Formacion Cienaga del Rio Huaco (Cretacico Superior), Precordillera central, San Juan, Argentina. Rev Asoc Geológica Arg 55:83–99Google Scholar
  66. Lossada A, Mardonez D, Suriano J, Fitzgerald P, Hoke G, Mahoney B, Giambiagi L, Aragón E (2015) Uplift Sequence of the Main Morphostructural Units of the Southern Central Andes at 30° S: insights from a multidisciplinary approach. Am. Geophys. Union Meet T23A-2931Google Scholar
  67. Lossada AC, Giambiagi L, Hoke GD, Fitzgerald PG, Creixell C, Murillo I, Mardonez D, Velásquez R, Suriano J (2017) Thermochronologic evidence for late eocene andean mountain building at 30° S. TectonicsGoogle Scholar
  68. Maksaev V, Moscoso R, Mpodozis C, Nasi C (1984) Las unidades volcánicas y plutónicas del Cenozoico superior en la Alta Cordillera del Norte Chico (29°–31° S), Geología, alteración hidrotermal y mineralización. Rev Geol Chile 21:11–51Google Scholar
  69. Manea VC, Pérez-gussinyé M, Manea M (2012) Chilean flat slab subduction controlled by overriding plate thickness and trench rollback. Geology 1:35–38CrossRefGoogle Scholar
  70. Martin M, Clavero J, Mpodozis C, Cutiño L (1995) Estudio geológico regional de la franja El Indio, Cordillera de Coquimbo. Informe registrado IR-95–6 Servicio Nacional de Geología y Minería, Chile, and Compañía Minera San JoséGoogle Scholar
  71. Mazzitelli M, Mahoney B, Balgord E, Giambiagi L, Kimbrough D, Lossada A, Maccann C (2015) Evolution of the Manatiales Basin, San Juan, Argentina: constraining Miocene orogenic patterns in the South-Central Andes. GSA Meet 47(7):151Google Scholar
  72. Mescua JF, Giambiagi L, Barrionuevo M, Tassara A, Mardonez D, Mazzitelli M, Lossada A (2016) Basement composition and basin geometry controls on upper-crustal deformation in the southern central andes (30–36° S). Geol Mag, 153(5–6):945–961Google Scholar
  73. Mirré JC (1966) Geología del Valle del Río Los Patos (entre Barreal y Las Hornillas). Rev Asoc Geol Arg 21(4):211–231Google Scholar
  74. Moscoso R, Mpodozis C (1988) Estilos estructurales en el norte chico de Chile (28–31° S), regiones de Atacama y Coquimbo. Andean Geol 15(2):151–166Google Scholar
  75. Mpodozis C, Ramos V (1989) The Andes of Chile and Argentina. In: Ericksen GE, Cañas Pinochet MT, Reinemund JA (eds.) Geology of the Andes and Its Relation to Hydrocarbon and Mineral Resources. Circum-Pacific Council for Energy and Mineral Resources, Houston, Texas, pp 56–90Google Scholar
  76. Mpodozis C, Cornejo P (2012) Cenozoic tectonics and porphyry copper systems of the Chilean Andes. Society Economic Geolog, Sp Publ 16:329–360Google Scholar
  77. Nullo F, Stephens G (1993) Estructura y deformación terciaria en el área de las Aucas, sur de Mendoza. XII Cong Geol Arg, Mendoza 3:107–112Google Scholar
  78. Oliveros V, Morata D, Aguirre L, Féraud G, Fornari G (2007) Jurassic to early cretaceous subduction-related magmatism in the Coastal Cordillera of northern Chile (18°30′–24° S): geochemistry and petrogenesis. Rev Geol Chile 34(2):209–232Google Scholar
  79. Oncken O, Hindle D, Kley J, Elger K, Victor P, Schemann K (2006) Deformation of the Central Andean upper plate system—facts, fiction and constraints for plateau models. In: Oncken O, Chong G, Franz G, Giese P, Gotze HJ, Ramos VA, Strecker MR, Wigger P (eds) The Andes-active subduction orogeny. Springer, Berlin Heidelberg, pp 3–28Google Scholar
  80. Pardo-Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American plates since late cretaceous time. Tectonics 6(3):233–248CrossRefGoogle Scholar
  81. Pérez DJ (1995) Estudio geológico del cordón del Espinacito y regiones adyacentes, provincia de San Juan. (unpublished) PhD Thesis, Universidad de Buenos AiresGoogle Scholar
  82. Pérez DJ (2001) Tectonic sand unroofing history of Neogene Manatiales foreland basin deposits, Cordillera Frontal (32°30′S), San Juan province, Argentina. J South Am Earth Sci 14:693–705CrossRefGoogle Scholar
  83. Pilger RH (1984) Cenozoic plate kinematics, subduction and magmatism: South American Andes. J Geol Soc 141(5):793–802CrossRefGoogle Scholar
  84. Pineda G, Emparán C (2006) Geología del área Vicuña-Pichasca, Región de Coquimbo. Carta Geológica de Chile 1:100.000. Servicio Nacional de Geología y Minería, Santiago, N°97 p 40Google Scholar
  85. Polanski J (1958) El bloque varíscico de la Cordillera Frontal de Mendoza. Rev Asoc Geol Arg 12(3):165–196Google Scholar
  86. Polanski J (1964) Descripción geológica de la Hoja 25 a-b—Volcán de San José, provincia de Mendoza. Dirección Nacional de Geología y Minería, Buenos Aires 98:1–92Google Scholar
  87. Polanski J (1972) Descripción geológica de la Hoja 24 a-b (Cerro Tupungato), provincia de Mendoza. Dirección Nacional de Geología y Minería, Buenos Aires, p 110Google Scholar
  88. Porras H, Pinto L, Tunik M, Giambiagi L, Deckart K (2016) Provenance of the Alto Tunuyan Basin (33°40′S, Argentina) and its implications for the evolution of the Andean Range: insights from petrography, geochemistry and U-Pb LA-ICP-MS zircon ages. Tectonophysics (in press)Google Scholar
  89. Ramos VA (1988) The tectonics of the Central Andes, 30° to 33° S latitude. In: Clark S, Burchfiel D (eds.) Processes in continental lithospheric deformation: Geological Soc Am, Sp Paper 218: 31–54Google Scholar
  90. Ramos VA (2010) The tectonic regime along the Andes: present-day and mesozoic regimes. Geol Journal 45(1):2–25CrossRefGoogle Scholar
  91. Ramos V, Kay S, Page R, Munizaga F (1990) La ignimbrita Vacas Heladas y el cese del volcanismo en el Valle del Cura, provincia de San Juan. Rev Asoc Geol Arg 44:336–35Google Scholar
  92. Ramos VA, Cegarra MI, Cristallini E (1996) Cenozoic tectonics of the High Andes of west-central Argentina (30°–36° S latitude). Tectonophys 259:185–200CrossRefGoogle Scholar
  93. Ramos VA, Cristallini E, Pérez D (2002) The Pampean flat-slab of the Central Andes. J South Am Earth Sci 15:59–78CrossRefGoogle Scholar
  94. Ramos VA, Zapata T, Cristallini E, Introcaso A (2004) The Andean thrust system: Latitudinal variations in structural styles and orogenic shortening. In: McClay KR (ed.) Thrust Tectonics and Hydrocarbon Systems. American Association of Petroleum Geologists Memoir 82, p. 30–50Google Scholar
  95. Rodríguez MP (2013) Cenozoic uplift and exhumation above the southern part of the flat slab subduction segment of Chile (28.5–32° S). PhD Thesis (Unpublish), Universidad de Chile, Santiago p 220Google Scholar
  96. Rossel P, Oliveros V, Ducea MN, Charrier R, Scaillet S, Retamal L, Figueroa O (2013) The Early andean subduction system as an analog to island arcs: evidence from across-arc geochemical variations in northern chile. Lithos 179:211–230Google Scholar
  97. Silver PG, Russo RM, Lithgow-Bertelloni C (1998) Coupling of South American and African plate motion and plate deformation. Science 279:60–63CrossRefGoogle Scholar
  98. Somoza R (1998) Updated Nazca (Farallon)—South America relative motions during the last 40 My: implications for mountain building in the central Andean region. J South Am Earth Sci 11(3):211–215CrossRefGoogle Scholar
  99. Strecker MR, Alonso R, Bookhagen B, Carrapa B, Coutand I, Hain MP, Hilley GE, Mortimer E, Schoenbohm L, Sobel ER (2009) Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes? Geology 37:643–646CrossRefGoogle Scholar
  100. Suriano J, Mardonez D, Mahoney B, Mescua J, Giambiagi L, Kimbrough D, Lossada A (2017) Uplift sequence of the Andes at 30° S: insights from sedimentology and U/Pb dating of synorogenic deposits. J South Am Earth Sci 75:11–34Google Scholar
  101. Turienzo M (2010) Structural style of the Malargüe foldand—thrust belt at the Diamante River area (34º30′–34º50′S) and its linkage with the Cordillera Frontal, Andes of central Argentina. J South Am Earth Sci 29:537–556CrossRefGoogle Scholar
  102. Turienzo M, Dimieri L (2005) Geometric and kinematic model for basement-involved backthrusting at Diamante River, southern Andes, Mendoza province, Argentina. J South Am Earth Sci 19:111–125CrossRefGoogle Scholar
  103. Turienzo M, Dimieri L, Frisicale C, Araujo V, Sánchez N (2012) Cenozoic structural evolution of the Argentinean Andes at 34°40′S: a close relationship between thick and thin—skinned deformation. Andean Geol 39(2):317–357Google Scholar
  104. Tassara A, Yáñez G (2003) Relación entre el espesor elástico de la litósfera y la segmentación tectónica del margen andino (15–47° S). Rev Geol Chile 32:159–186Google Scholar
  105. Walcek AA, Hoke G (2012) Surface uplift and erosion of the southernmost Argentine Precordillera. Geomorphology 153–154:156–168CrossRefGoogle Scholar
  106. Winocur DA (2010) Geología y estructura del Valle del Cura y el sector central del Norte Chico, provincia de San Juan y IV Región de Coquimbo, Argentina y Chile. (unpublish) PhD thesis, Universidad de Buenos AiresGoogle Scholar
  107. Winocur DA, Litvak VD, Ramos VA (2015) Magmatic and tectonic evolution of the Oligocene Valle del Cura Basin, Main Andes of Argentina and Chile: Evidence for generalized extension. Geol Soc, London 399:1–34CrossRefGoogle Scholar
  108. Yáñez G, Cembrano J (2004) Role of viscous plate coupling in the late tertiary Andean tectonics. J of Geophys Res 109 (B2)Google Scholar
  109. Yáñez GA, Ranero CR, von Huene R, Díaz J (2001) Magnetic anomaly interpretation across the southern central Andes (32°–34° S): The role of the Juan Fernandez Ridge in the late tertiary evolution of the margin. J Geophys Res 106:6325–6345CrossRefGoogle Scholar
  110. Yáñez G, Cembrano J, Pardo M, Ranero C, Selles D (2002) The Challenger—Juan Fernandez—Maipo major tectonic transition of the Nazca-Andean subduction system at 33–34° S: geodynamic evidence and implications. J South AM Earth Sci 15:23–38CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ana C. Lossada
    • 1
  • Laura Giambiagi
    • 1
  • Gregory Hoke
    • 2
  • José Mescua
    • 1
  • Julieta Suriano
    • 3
  • Manuela Mazzitelli
    • 1
  1. 1.Centro Regional de Investigaciones Científicas y TecnológicasIANIGLA, CCT MendozaMendozaArgentina
  2. 2.Department of Earth SciencesSyracuse UniversitySyracuse NYUSA
  3. 3.IGeBA—FCEyN, UBA-CONICETBuenos AiresArgentina

Personalised recommendations