Advertisement

Safety Aspects of Non-Thermal Plasmas

  • Kristian Wende
  • Anke Schmidt
  • Sander Bekeschus
Chapter

Abstract

Non-thermal plasmas are a valuable component of the biomedical research and application toolbox. In the past years, a plethora of fundamental and applied knowledge on plasmas was gathered. An important prerequisite for their clinical applicability is safety. The chapter comprises the current knowledge on potential threats arising from the use of plasma. All major potential concerns (UV emission, electric fields, ROS/RNS, source material) will be introduced and discussed briefly. Numerous citations will allow to extract further knowledge on specific details. As the number of plasma sources is very large, the text focuses on sources approved as medical devices in Germany (e.g. kINPen, SteriPlas) and well documented sources (e.g. COST jet). A special emphasis is given to the potential impact of plasmas on the genetic code. It can be concluded that efforts aiming at the harmonization of test methods (DIN SPEC, OECD guidelines, ISO norms) were valuable, and test according to these have been performed for a clinically relevant plasma sources. In summary, current data suggest that the tested plasma sources are safe, both regarding the physico-chemical and the biological point of view. However, the test results cannot be generalized, generating the need to test each source appropriately.

Keywords

Cold plasma Non-thermal plasma Plasma medicine Risk assessment Safety aspects 

References

  1. 1.
    Yarmolenko PS, Moon EJ, Landon C, Manzoor A, Hochman DW, Viglianti BL, Dewhirst MW. Thresholds for thermal damage to normal tissues: An update. Int J Hyperthermia. 2011;27(4):320–43.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Dewhirst MW, Viglianti B, Lora-Michiels M, Hanson M, Hoopes P. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia. 2003;19(3):267–94.PubMedCrossRefGoogle Scholar
  3. 3.
    Lademann J, Richter H, Alborova A, Humme D, Patzelt A, Kramer A, Weltmann KD, Hartmann B, Ottomann C, Fluhr JW, Hinz P, Hubner G, Lademann O. Risk assessment of the application of a plasma jet in dermatology. J Biomed Opt. 2009;14(5):054025.PubMedCrossRefGoogle Scholar
  4. 4.
    Lademann J, Ulrich C, Patzelt A, Richter H, Kluschke F, Klebes M, Lademann O, Kramer A, Weltmann KD, Lange-Asschenfeldt B. Risk assessment of the application of tissue-tolerable plasma on human skin. Clin Plasma Med. 2013;1(1):5–10.CrossRefGoogle Scholar
  5. 5.
    Weltmann KD, Kindel E, Brandenburg R, Meyer C, Bussiahn R, Wilke C, von Woedtke T. Atmospheric pressure plasma jet for medical therapy: plasma parameters and risk estimation. Contrib Plasma Phys. 2009;49(9):631–40.CrossRefGoogle Scholar
  6. 6.
    Brehmer F, Haenssle H, Daeschlein G, Ahmed R, Pfeiffer S, Görlitz A, Simon D, Schön M, Wandke D, Emmert S. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm® VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol. 2015;29(1):148–55.PubMedCrossRefGoogle Scholar
  7. 7.
    Isbary G, Heinlin J, Shimizu T, Zimmermann JL, Morfill G, Schmidt HU, Monetti R, Steffes B, Bunk W, Li Y, Klaempfl T, Karrer S, Landthaler M, Stolz W. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol. 2012;167(2):404–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Von Woedtke T, Metelmann HR, Weltmann KD. Clinical plasma medicine: state and perspectives of in vivo application of cold atmospheric plasma. Contrib Plasma Phys. 2014;54(2):104–17.CrossRefGoogle Scholar
  9. 9.
    Collet G, Robert E, Lenoir A, Vandamme M, Darny T, Dozias S, Kieda C, Pouvesle JM. Plasma jet-induced tissue oxygenation: potentialities for new therapeutic strategies. Plasma Sources Sci Technol. 2014;23(1):012005.CrossRefGoogle Scholar
  10. 10.
    Schmidt A, von Woedtke T, Bekeschus S. Periodic exposure of keratinocytes to cold physical plasma: an in vitro model for redox-related diseases of the skin. Oxid Med Cell Longev. 2016;2016:9816072.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Isbary G, Heinlin J, Shimizu T, Zimmermann J, Morfill G, Schmidt HU, Monetti R, Steffes B, Bunk W, Li Y. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol. 2012;167(2):404–10.PubMedCrossRefGoogle Scholar
  12. 12.
    Tiede R, Hirschberg J, Viöl W, Emmert S. A μs-pulsed dielectric barrier discharge source: physical characterization and biological effects on human skin fibroblasts. Plasma Process Polym. 2016;13(8):775–87.CrossRefGoogle Scholar
  13. 13.
    Wattieaux G, Yousfi M, Merbahi N. Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure. Spectrochim Acta B At Spectrosc. 2013;89:66–76.CrossRefGoogle Scholar
  14. 14.
    Winter J, Brandenburg R, Weltmann K. Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol. 2015;24(6):064001.CrossRefGoogle Scholar
  15. 15.
    Lackmann J-W, Schneider S, Edengeiser E, Jarzina F, Brinckmann S, Steinborn E, Havenith M, Benedikt J, Bandow JE. Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J R Soc Interface. 2013;10(89):20130591.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lange H, Foest R, Schafer J, Weltmann KD. Vacuum UV radiation of a plasma jet operated with rare gases at atmospheric pressure. IEEE Transact Plasma Sci. 2009;37(6):859–65.CrossRefGoogle Scholar
  17. 17.
    Sinha RP, Häder D-P. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci. 2002;1(4):225–36.PubMedCrossRefGoogle Scholar
  18. 18.
    Anderson RR, Parrish JA. The optics of human skin. J Investig Dermatol. 1981;77(1):13–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T. UV-induced skin damage. Toxicology. 2003;189(1):21–39.PubMedCrossRefGoogle Scholar
  20. 20.
    Diepgen T, Mahler V. The epidemiology of skin cancer. Br J Dermatol. 2002;146(s61):1–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Schallreuter K, Wood J, Lemke K, Levenig C. Treatment of vitiligo with a topical application of pseudocatalase and calcium in combination with short-term UVB exposure: a case study on 33 patients. Dermatology. 1995;190(3):223–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Scherschun L, Kim JJ, Lim HW. Narrow-band ultraviolet B is a useful and well-tolerated treatment for vitiligo. J Am Acad Dermatol. 2001;44(6):999–1003.PubMedCrossRefGoogle Scholar
  23. 23.
    Weischer M, Blum A, Eberhard F, Röcken M, Berneburg M. No evidence for increased skin cancer risk in psoriasis patients treated with broadband or narrowband UVB phototherapy: a first retrospective study. Acta Derm Venereol. 2004;84(5).Google Scholar
  24. 24.
    Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun. 2014;5.Google Scholar
  26. 26.
    Adachi T, Tanaka H, Nonomura S, Hara H, Kondo S, Hori M. Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial–nuclear network. Free Radic Biol Med. 2015;79:28–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Schmidt A, Bekeschus S, Wende K, Vollmar B, Woedtke T. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp Dermatol. 2017;26(2):156–62.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Schmidt A, Woedtke TV, Stenzel J, Lindner T, Polei S, Vollmar B, Bekeschus S. One year follow-up risk assessment in SKH-1 mice and wounds treated with an argon plasma jet. Int J Mol Sci. 2017;18(4):868.PubMedCentralCrossRefGoogle Scholar
  29. 29.
    Attri P, Kim YH, Park DH, Park JH, Hong YJ, Uhm HS, Kim K-N, Fridman A, Choi EH. Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Sci Rep. 2015;5:9332.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Jablonowski H, Bussiahn R, Hammer M, Weltmann K-D, von Woedtke T, Reuter S. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids. Phys Plasmas. 2015;22(12):122008.CrossRefGoogle Scholar
  31. 31.
    Bruggeman P, Kushner MJ, Locke BR, Gardeniers J, Graham W, Graves DB, Hofman-Caris R, Maric D, Reid JP, Ceriani E. Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci Technol. 2016;25(5):053002.CrossRefGoogle Scholar
  32. 32.
    Metelmann H-R, Nedrelow DS, Seebauer C, Schuster M, von Woedtke T, Weltmann K-D, Kindler S, Metelmann PH, Finkelstein SE, Von Hoff DD. Head and neck cancer treatment and physical plasma. Clin Plasma Med. 2015;3(1):17–23.CrossRefGoogle Scholar
  33. 33.
    Rajasekaran P, Opländer C, Hoffmeister D, Bibinov N, Suschek CV, Wandke D, Awakowicz P. Characterization of dielectric barrier discharge (DBD) on mouse and histological evaluation of the plasma-treated tissue. Plasma Process Polym. 2011;8(3):246–55.CrossRefGoogle Scholar
  34. 34.
    Boudam M, Moisan M, Saoudi B, Popovici C, Gherardi N, Massines F. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J Phys D Appl Phys. 2006;39(16):3494.CrossRefGoogle Scholar
  35. 35.
    Heise M, Neff W, Franken O, Muranyi P, Wunderlich J. Sterilization of polymer foils with dielectric barrier discharges at atmospheric pressure. Plasmas Polym. 2004;9(1):23–33.CrossRefGoogle Scholar
  36. 36.
    Vig JR. UV/ozone cleaning of surfaces. J Vac Sci Technol A. 1985;3(3):1027–34.CrossRefGoogle Scholar
  37. 37.
    Lerouge S, Fozza A, Wertheimer M, Marchand R, Yahia LH. Sterilization by low-pressure plasma: the role of vacuum-ultraviolet radiation. Plasmas Polym. 2000;5(1):31–46.CrossRefGoogle Scholar
  38. 38.
    Fan H, Kovacevic R. A unified model of transport phenomena in gas metal arc welding including electrode, arc plasma and molten pool. J Phys D Appl Phys. 2004;37(18):2531.CrossRefGoogle Scholar
  39. 39.
    Khakpour A, Franke S, Uhrlandt D, Gorchakov S, Methling R-P. Electrical arc model based on physical parameters and power calculation. IEEE Transact Plasma Sci. 2015;43(8):2721–9.CrossRefGoogle Scholar
  40. 40.
    Mann MS, Tiede R, Gavenis K, Daeschlein G, Bussiahn R, Weltmann K-D, Emmert S, von Woedtke T, Ahmed R. Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen® MED. Clin Plasma Med. 2016;4(2):35–45.CrossRefGoogle Scholar
  41. 41.
    IEC/VDE. Effects of current on human beings and livestock: part 1–general aspects. IEC/TS. 2005;60479:1.Google Scholar
  42. 42.
    Lehmann A, Pietag F, Arnold T. Human health risk evaluation of a microwave-driven atmospheric plasma jet as medical device. Clin Plasma Med. 2017;7-8:16–23.CrossRefGoogle Scholar
  43. 43.
    Babaeva NY, Kushner MJ. Intracellular electric fields produced by dielectric barrier discharge treatment of skin. J Phys D Appl Phys. 2010;43(18):185206.CrossRefGoogle Scholar
  44. 44.
    Guo A, Song B, Reid B, Gu Y, Forrester JV, Jahoda CA, Zhao M. Effects of physiological electric fields on migration of human dermal fibroblasts. J Investig Dermatol. 2010;130(9):2320–7.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ignarro LJ, Bush PA, Buga GM, Wood KS, Fukuto JM, Rajfer J. Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem Biophys Res Commun. 1990;170(2):843–50.PubMedCrossRefGoogle Scholar
  46. 46.
    Chen X, Kolb JF, Swanson RJ, Schoenbach KH, Beebe SJ. Apoptosis initiation and angiogenesis inhibition: melanoma targets for nanosecond pulsed electric fields. Pigment Cell Melanoma Res. 2010;23(4):554–63.PubMedCrossRefGoogle Scholar
  47. 47.
    Jordan CA, Neumann E, Sowers AE. Electroporation and electrofusion in cell biology. New York: Springer Science & Business Media; 2013.Google Scholar
  48. 48.
    Steuer A, Schmidt A, Labohá P, Babica P, Kolb JF. Transient suppression of gap junctional intercellular communication after exposure to 100-nanosecond pulsed electric fields. Bioelectrochemistry. 2016;112:33–46.PubMedCrossRefGoogle Scholar
  49. 49.
    Babaeva NY, Tian W, Kushner MJ. The interaction between plasma filaments in dielectric barrier discharges and liquid covered wounds: electric fields delivered to model platelets and cells. J Phys D Appl Phys. 2014;47(23):235201.CrossRefGoogle Scholar
  50. 50.
    Neyts EC, Yusupov M, Verlackt CC, Bogaerts A. Computer simulations of plasma–biomolecule and plasma–tissue interactions for a better insight in plasma medicine. J Phys D Appl Phys. 2014;47(29):293001.CrossRefGoogle Scholar
  51. 51.
    Emmert S, Brehmer F, Hänßle H, Helmke A, Mertens N, Ahmed R, Simon D, Wandke D, Maus-Friedrichs W, Däschlein G. Atmospheric pressure plasma in dermatology: Ulcus treatment and much more. Clin Plasma Med. 2013;1(1):24–9.CrossRefGoogle Scholar
  52. 52.
    Norberg SA, Johnsen E, Kushner MJ. Helium atmospheric pressure plasma jets interacting with wet cells: delivery of electric fields. J Phys D Appl Phys. 2016;49(18):185201.CrossRefGoogle Scholar
  53. 53.
    Vandamme M, Robert E, Pesnel S, Barbosa E, Dozias S, Sobilo J, Lerondel S, Le Pape A, Pouvesle JM. Antitumor effect of plasma treatment on U87 glioma xenografts: preliminary results. Plasma Process Polym. 2010;7(3–4):264–73.CrossRefGoogle Scholar
  54. 54.
    Weltmann K, von Woedtke T. Plasma medicine—current state of research and medical application. Plasma Phys Control Fusion. 2016;59(1):014031.CrossRefGoogle Scholar
  55. 55.
    Cao X, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc. 2004;24(1):1–10.CrossRefGoogle Scholar
  56. 56.
    Foerch R, McIntyre N, Sodhi R, Hunter D. Nitrogen plasma treatment of polyethylene and polystyrene in a remote plasma reactor. J Appl Polym Sci. 1990;40(11–12):1903–15.CrossRefGoogle Scholar
  57. 57.
    Polak M, Winter J, Schnabel U, Ehlbeck J, Weltmann KD. Innovative plasma generation in flexible biopsy channels for inner-tube decontamination and medical applications. Plasma Process Polym. 2012;9(1):67–76.CrossRefGoogle Scholar
  58. 58.
    Critchley J, Knight G, Wright W. Fluorine-containing polymers. In: Heat-resistant polymers. New York: Springer; 1983. p. 87–123.CrossRefGoogle Scholar
  59. 59.
    Barbier O, Arreola-Mendoza L, Del Razo LM. Molecular mechanisms of fluoride toxicity. Chem Biol Interact. 2010;188(2):319–33.PubMedCrossRefGoogle Scholar
  60. 60.
    Kohn WG, Maas WR, Malvitz DM, Presson SM, Shaddix KK. Recommendations for using fluoride to prevent and control dental caries in the United States. Morb Mortal Wkly Rep. 2001;50:1–42.Google Scholar
  61. 61.
    Beyler CL, Hirschler MM. Thermal decomposition of polymers. In: DiNenno PJ, editor. SFPE handbook of fire protection engineering, vol. 2. 3rd ed. Quincy: Protection Association; 2002. p. 111–31.Google Scholar
  62. 62.
    Stapler JT, Barnes WJ, Yelland WE. Thermal degradation of polyvinylidene fluoride and polyvinyl fluoride by oven pyrolysis, Army Natick Labs MA Clothing and Organic Materials Lab.; 1968.Google Scholar
  63. 63.
    Patel P, Hull TR, McCabe RW, Flath D, Grasmeder J, Percy M. Mechanism of thermal decomposition of poly (ether ether ketone)(PEEK) from a review of decomposition studies. Polym Degrad Stab. 2010;95(5):709–18.CrossRefGoogle Scholar
  64. 64.
    Fricke K, Reuter S, Schroder D, Schulz-von der Gathen V, Weltmann K-D, von Woedtke T. Investigation of surface etching of poly (ether ether ketone) by atmospheric-pressure plasmas. IEEE Transact Plasma Sci. 2012;40(11):2900–11.CrossRefGoogle Scholar
  65. 65.
    Fricke K, Steffen H, Von Woedtke T, Schröder K, Weltmann KD. High rate etching of polymers by means of an atmospheric pressure plasma jet. Plasma Process Polym. 2011;8(1):51–8.CrossRefGoogle Scholar
  66. 66.
    Flamm DL, Auciello O. Plasma deposition, treatment, and etching of polymers: the treatment and etching of polymers. Amsterdam: Elsevier; 2012.Google Scholar
  67. 67.
    Oehrlein GS, Phaneuf RJ, Graves DB. Plasma-polymer interactions: a review of progress in understanding polymer resist mask durability during plasma etching for nanoscale fabrication. J Vac Sci Technol. 2011;29(1):010801.CrossRefGoogle Scholar
  68. 68.
    Wende K, Schröder K, Lindequist U, Ohl A. Plasma-based modification of polystyrene surfaces for serum-free culture of osteoblastic cell lines. Plasma Process Polym. 2006;3(6–7):524–31.CrossRefGoogle Scholar
  69. 69.
    Ohorodnik S, DeGendt S, Tong S, Harrison W. Consideration of the chemical reactivity of trace impurities present in a glow discharge. J Anal At Spectrom. 1993;8(6):859–65.CrossRefGoogle Scholar
  70. 70.
    Winter J, Wende K, Masur K, Iseni S, Dünnbier M, Hammer M, Tresp H, Weltmann K, Reuter S. Feed gas humidity: a vital parameter affecting a cold atmospheric-pressure plasma jet and plasma-treated human skin cells. J Phys D Appl Phys. 2013;46(29):295401.CrossRefGoogle Scholar
  71. 71.
    Frenking G, Koch W, Reichel F, Cremer D. Light noble gas chemistry: STRUCTURES, stabilities, and bonding of helium, neon, and argon compounds. J Am Chem Soc. 1990;112(11):4240–56.CrossRefGoogle Scholar
  72. 72.
    Grochala W, Khriachtchev L, Räsänen M. Noble-gas chemistry. In: Khriachtchev F, editor. Physics and chemistry at low temperatures, vol. 13. Singapore: Pan Stanford; 2011. p. 419.CrossRefGoogle Scholar
  73. 73.
    Eisenhauer D, Saunders C, Ho H, Wolfe B. Hemodynamic effects of argon pneumoperitoneum. Surg Endosc. 1994;8(4):315–21.PubMedCrossRefGoogle Scholar
  74. 74.
    Leighton TA, Liu S-Y, Bongard FS. Comparative cardiopulmonary effects of carbon dioxide versus helium pneumoperitoneum. Surgery. 1993;113(5):527–31.PubMedGoogle Scholar
  75. 75.
    Van Gessel A, Alards K, Bruggeman P. NO production in an RF plasma jet at atmospheric pressure. J Phys D Appl Phys. 2013;46(26):265202.CrossRefGoogle Scholar
  76. 76.
    Iseni S, Zhang S, van Gessel A, Hofmann S, van Ham B, Reuter S, Weltmann K, Bruggeman P. Nitric oxide density distributions in the effluent of an RF argon APPJ: effect of gas flow rate and substrate. New J Phys. 2014;16(12):123011.CrossRefGoogle Scholar
  77. 77.
    Kogoma M, Okazaki S. Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure. J Phys D Appl Phys. 1994;27(9):1985.CrossRefGoogle Scholar
  78. 78.
    Zhang S, van Gaens W, van Gessel B, Hofmann S, van Veldhuizen E, Bogaerts A, Bruggeman P. Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms. J Phys D Appl Phys. 2013;46(20):205202.CrossRefGoogle Scholar
  79. 79.
    Bussiahn R, Lembke N, Gesche R, von Woedtke T, Weltmann KD. Plasmaquellen für biomedizinische Anwendungen. HygMed. 2013;38:216–21.Google Scholar
  80. 80.
    Kalghatgi S, Fridman A, Azizkhan-Clifford J, Friedman G. DNA damage in mammalian cells by non-thermal atmospheric pressure microsecond pulsed dielectric barrier discharge plasma is not mediated by ozone. Plasma Process Polym. 2012;9(7):726–32.CrossRefGoogle Scholar
  81. 81.
    Ziuzina D, Patil S, Cullen P, Keener K, Bourke P. Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J Appl Microbiol. 2013;114(3):778–87.PubMedCrossRefGoogle Scholar
  82. 82.
    Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys. 2012;45(26):263001.CrossRefGoogle Scholar
  83. 83.
    Reuter S, Tresp H, Wende K, Hammer MU, Winter J, Masur K, Schmidt-Bleker A, Weltmann K-D. From RONS to ROS: tailoring plasma jet treatment of skin cells. IEEE Transact Plasma Sci. 2012;40(11):2986–93.CrossRefGoogle Scholar
  84. 84.
    Vandamme M, Robert E, Lerondel S, Sarron V, Ries D, Dozias S, Sobilo J, Gosset D, Kieda C, Legrain B. ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer. 2012;130(9):2185–94.PubMedCrossRefGoogle Scholar
  85. 85.
    Wende K, Williams P, Dalluge J, Van Gaens W, Aboubakr H, Bischof J, von Woedtke T, Goyal SM, Weltmann K-D, Bogaerts A. Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet. Biointerphases. 2015;10(2):029518.PubMedCrossRefGoogle Scholar
  86. 86.
    Bielski BH, Cabelli DE, Arudi RL, Ross AB. Reactivity of HO2/O− 2 radicals in aqueous solution. J Phys Chem Ref Data Monogr. 1985;14(4):1041–100.CrossRefGoogle Scholar
  87. 87.
    Hanschmann E-M, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins—molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal. 2013;19(13):1539–605.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Neta P, Huie RE, Ross AB. Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data Monogr. 1988;17(3):1027–284.CrossRefGoogle Scholar
  89. 89.
    Buxton GV, Greenstock CL, Helman WP, Ross AB. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (· OH/· O− in aqueous solution). J Phys Chem Ref Data Monogr. 1988;17(2):513–886.CrossRefGoogle Scholar
  90. 90.
    Joshi AA, Locke BR, Arce P, Finney WC. Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. J Hazard Mater. 1995;41(1):3–30.CrossRefGoogle Scholar
  91. 91.
    Winter J, Tresp H, Hammer M, Iseni S, Kupsch S, Schmidt-Bleker A, Wende K, Dünnbier M, Masur K, Weltmann K. Tracking plasma generated H2O2 from gas into liquid phase and revealing its dominant impact on human skin cells. J Phys D Appl Phys. 2014;47(28):285401.CrossRefGoogle Scholar
  92. 92.
    Buettner GR, Oberley LW. Considerations in the spin trapping of superoxide and hydroxyl radical in aqueous systems using 5, 5-dimethyl-1-pyrroline-1-oxide. Biochem Biophys Res Commun. 1978;83(1):69–74.PubMedCrossRefGoogle Scholar
  93. 93.
    Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4(5):278–86.PubMedCrossRefGoogle Scholar
  94. 94.
    Bekeschus S, Liedtke KR, von Woedtke T, Partecke LI. Pro-oxidant tumor therapy in murine melanoma and pancreatic cancer. Free Radic Biol Med. 2017;108:S76.CrossRefGoogle Scholar
  95. 95.
    Choe E, Min DB. Chemistry and reactions of reactive oxygen species in foods. J Food Sci. 2005;70(9).CrossRefGoogle Scholar
  96. 96.
    Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W. A comprehensive classification system for lipids. J Lipid Res. 2005;46(5):839–62.PubMedCrossRefGoogle Scholar
  97. 97.
    Dorai R, Kushner MJ. A model for plasma modification of polypropylene using atmospheric pressure discharges. J Phys D Appl Phys. 2003;36(6):666.CrossRefGoogle Scholar
  98. 98.
    Fridman A. Plasma chemistry. Cambridge: Cambridge University Press; 2008.CrossRefGoogle Scholar
  99. 99.
    Reinke M, Mantzaras J, Bombach R, Schenker S, Inauen A. Gas phase chemistry in catalytic combustion of methane/air mixtures over platinum at pressures of 1 to 16 bar. Combust Flame. 2005;141(4):448–68.CrossRefGoogle Scholar
  100. 100.
    Van der Paal J, Aernouts S, van Duin AC, Neyts EC, Bogaerts A. Interaction of O and OH radicals with a simple model system for lipids in the skin barrier: a reactive molecular dynamics investigation for plasma medicine. J Phys D Appl Phys. 2013;46(39):395201.CrossRefGoogle Scholar
  101. 101.
    Van der Paal J, Neyts EC, Verlackt CC, Bogaerts A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem Sci. 2016;7(1):489–98.PubMedCrossRefGoogle Scholar
  102. 102.
    Maheux S, Frache G, Thomann J, Clément F, Penny C, Belmonte T, Duday D. Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment. J Phys D Appl Phys. 2016;49(34):344001.CrossRefGoogle Scholar
  103. 103.
    Svarnas P, Matrali S, Gazeli K, Aleiferis S, Clément F, Antimisiaris S. Atmospheric-pressure guided streamers for liposomal membrane disruption. Appl Phys Lett. 2012;101(26):264103.CrossRefGoogle Scholar
  104. 104.
    Yusupov M, Wende K, Kupsch S, Neyts E, Reuter S, Bogaerts A. Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments. Sci Rep. 2017;7:5761.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Roehm JN, Hadley JG, Menzel DB. Oxidation of unsaturated fatty acids by ozone and nitrogen dioxide. Arch Environ Health. 1971;23(2):142–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Guéraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, Jouanin I, Siems W, Uchida K. Chemistry and biochemistry of lipid peroxidation products. Free Radic Res. 2010;44(10):1098–124.PubMedCrossRefGoogle Scholar
  107. 107.
    Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014.Google Scholar
  108. 108.
    Kansanen E, Jyrkkänen H-K, Levonen A-L. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic Biol Med. 2012;52(6):973–82.PubMedCrossRefGoogle Scholar
  109. 109.
    Hammer MU, Forbrig E, Kupsch S, Weltmann K-D, Reuter S. Influence of plasma treatment on the structure and function of lipids. Plasma Med. 2013;3(1–2):97–114.CrossRefGoogle Scholar
  110. 110.
    Tero R, Yamashita R, Hashizume H, Suda Y, Takikawa H, Hori M, Ito M. Nanopore formation process in artificial cell membrane induced by plasma-generated reactive oxygen species. Arch Biochem Biophys. 2016;605:26–33.PubMedCrossRefGoogle Scholar
  111. 111.
    Schmidt A, Dietrich S, Steuer A, Weltmann K-D, von Woedtke T, Masur K, Wende K. Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase II pathways. J Biol Chem. 2015;290(11):6731–50.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Leduc M, Guay D, Coulombe S, Leask RL. Effects of non-thermal plasmas on DNA and mammalian cells. Plasma Process Polym. 2010;7(11):899–909.CrossRefGoogle Scholar
  113. 113.
    Takai E, Kitamura T, Kuwabara J, Ikawa S, Yoshizawa S, Shiraki K, Kawasaki H, Arakawa R, Kitano K. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution. J Phys D Appl Phys. 2014;47(28):285403.CrossRefGoogle Scholar
  114. 114.
    Yan D, Talbot A, Nourmohammadi N, Cheng X, Canady J, Sherman J, Keidar M. Principles of using cold atmospheric plasma stimulated media for cancer treatment. Sci Rep. 2015;5:18339.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Lackmann J, Baldus S, Steinborn E, Edengeiser E, Kogelheide F, Langklotz S, Schneider S, Leichert L, Benedikt J, Awakowicz P. A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds. J Phys D Appl Phys. 2015;48(49):494003.CrossRefGoogle Scholar
  116. 116.
    Lackmann J-W, Bandow JE. Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets. Appl Microbiol Biotechnol. 2014;98(14):6205–13.PubMedCrossRefGoogle Scholar
  117. 117.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA. The sequence of the human genome. Science. 2001;291(5507):1304–51.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7.PubMedCrossRefGoogle Scholar
  119. 119.
    Frøkjær-Jensen C, Jain N, Hansen L, Davis MW, Li Y, Zhao D, Rebora K, Millet JR, Liu X, Kim SK. An abundant class of Non-coding DNA can prevent stochastic gene silencing in the C. elegans Germline. Cell. 2016;166(2):343–57.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Ling H, Vincent K, Pichler M, Fodde R, Berindan-Neagoe I, Slack FJ, Calin GA. Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene. 2015;34(39):5003–11.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Varki A, Altheide TK. Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Res. 2005;15(12):1746–58.PubMedCrossRefGoogle Scholar
  122. 122.
    Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128(4):669–81.PubMedCrossRefGoogle Scholar
  123. 123.
    Reha-Krantz LJ. DNA polymerase proofreading: multiple roles maintain genome stability. Biochim Biophys Acta. 2010;1804(5):1049–63.PubMedCrossRefGoogle Scholar
  124. 124.
    Kunkel TA, Erie DA. Eukaryotic mismatch repair in relation to DNA replication. Annu Rev Genet. 2015;49:291–313.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Lujan SA, Clausen AR, Clark AB, MacAlpine HK, MacAlpine DM, Malc EP, Mieczkowski PA, Burkholder AB, Fargo DC, Gordenin DA. Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition. Genome Res. 2014;24(11):1751–64.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    St Charles JA, Liberti SE, Williams JS, Lujan SA, Kunkel TA. Quantifying the contributions of base selectivity, proofreading and mismatch repair to nuclear DNA replication in Saccharomyces cerevisiae. DNA Repair. 2015;31:41–51.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Ganai RA, Johansson E. DNA replication—a matter of fidelity. Mol Cell. 2016;62(5):745–55.PubMedCrossRefGoogle Scholar
  128. 128.
    Ridings JE. The thalidomide disaster, lessons from the past. Methods Mol Biol. 2013;947:575–86.PubMedCrossRefGoogle Scholar
  129. 129.
    Kanvah S, Joseph J, Schuster GB, Barnett RN, Cleveland CL, Landman U. Oxidation of DNA: damage to nucleobases. Acc Chem Res. 2009;43(2):280–7.CrossRefGoogle Scholar
  130. 130.
    Marrot L, Meunier J-R. Skin DNA photodamage and its biological consequences. J Am Acad Dermatol. 2008;58(5):S139–48.PubMedCrossRefGoogle Scholar
  131. 131.
    Bender CP, Hübner N-O, Weltmann K-D, Scharf C, Kramer A. Tissue tolerable plasma and polihexanide: are synergistic effects possible to promote healing of chronic wounds? In vivo and in vitro results. In: Machala Z, Hensen K, Akishev Y, editors. Plasma for bio-decontamination, medicine and food security. Heidelberg: Springer; 2012. p. 321–34.CrossRefGoogle Scholar
  132. 132.
    Fluhr JW, Sassning S, Lademann O, Darvin ME, Schanzer S, Kramer A, Richter H, Sterry W, Lademann J. In vivo skin treatment with tissue-tolerable plasma influences skin physiology and antioxidant profile in human stratum corneum. Exp Dermatol. 2012;21(2):130–4.PubMedCrossRefGoogle Scholar
  133. 133.
    Fridman G, Peddinghaus M, Balasubramanian M, Ayan H, Fridman A, Gutsol A, Brooks A. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process. 2006;26(4):425–42.CrossRefGoogle Scholar
  134. 134.
    Lademann J, Richter H, Alborova A, Humme D, Patzelt A, Kramer A, Weltmann K-D, Hartmann B, Ottomann C, Fluhr JW. Risk assessment of the application of a plasma jet in dermatology. J Biomed Opt. 2009;14(5):054025.PubMedCrossRefGoogle Scholar
  135. 135.
    Lademann J, Ulrich C, Patzelt A, Richter H, Kluschke F, Klebes M, Lademann O, Kramer A, Weltmann K, Lange-Asschenfeldt B. Risk assessment of the application of tissue-tolerable plasma on human skin. Clin Plasma Med. 2013;1(1):5–10.CrossRefGoogle Scholar
  136. 136.
    Metelmann H-R, von Woedtke T, Bussiahn R, Weltmann K-D, Rieck M, Khalili R, Podmelle F, Waite PD. Experimental recovery of CO2-laser skin lesions by plasma stimulation. Am J Cosmet Surg. 2012;29(1):52–6.CrossRefGoogle Scholar
  137. 137.
    Kos S, Blagus T, Cemazar M, Filipic G, Sersa G, Cvelbar U. Safety aspects of atmospheric pressure helium plasma jet operation on skin: in vivo study on mouse skin. PLoS One. 2017;12(4):e0174966.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Kurita H, Nakajima T, Yasuda H, Takashima K, Mizuno A, Wilson JI, Cunningham S. Single-molecule measurement of strand breaks on large DNA induced by atmospheric pressure plasma jet. Appl Phys Lett. 2011;99(19):191504.CrossRefGoogle Scholar
  139. 139.
    O’Connell D, Cox L, Hyland W, McMahon S, Reuter S, Graham W, Gans T, Currell F. Cold atmospheric pressure plasma jet interactions with plasmid DNA. Appl Phys Lett. 2011;98(4):043701.CrossRefGoogle Scholar
  140. 140.
    Ptasińska S, Bahnev B, Stypczyńska A, Bowden M, Mason NJ, Braithwaite NSJ. DNA strand scission induced by a non-thermal atmospheric pressure plasma jet. Phys Chem Chem Phys. 2010;12(28):7779–81.PubMedCrossRefGoogle Scholar
  141. 141.
    Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362(6422):709–15.PubMedCrossRefGoogle Scholar
  142. 142.
    Vijayaraghavan R, Izgorodin A, Ganesh V, Surianarayanan M, MacFarlane DR. Long-term structural and chemical stability of DNA in hydrated ionic liquids. Angew Chem Int Ed. 2010;49(9):1631–3.CrossRefGoogle Scholar
  143. 143.
    Peterson CL, Laniel M-A. Histones and histone modifications. Curr Biol. 2004;14(14):R546–51.PubMedCrossRefGoogle Scholar
  144. 144.
    Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15(11):703.PubMedCrossRefGoogle Scholar
  145. 145.
    Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411(6835):366.PubMedCrossRefGoogle Scholar
  146. 146.
    Iyama T, Wilson DM. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair. 2013;12(8):620–36.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009;361(15):1475–85.PubMedCrossRefGoogle Scholar
  149. 149.
    Boxhammer V, Li Y, Köritzer J, Shimizu T, Maisch T, Thomas H, Schlegel J, Morfill G, Zimmermann J. Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages. Mutat Res. 2013;753(1):23–8.PubMedCrossRefGoogle Scholar
  150. 150.
    Kluge S, Bekeschus S, Bender C, Benkhai H, Sckell A, Below H, Stope MB, Kramer A. Investigating the mutagenicity of a cold argon-plasma jet in an HET-MN model. PLoS One. 2016;11(9):e0160667.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Maisch T, Bosserhoff A, Unger P, Heider J, Shimizu T, Zimmermann J, Morfill G, Landthaler M, Karrer S. Investigation of toxicity and mutagenicity of cold atmospheric argon plasma. Environ Mol Mutagen. 2017;58(3):172–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Wende K, Bekeschus S, Schmidt A, Jatsch L, Hasse S, Weltmann K, Masur K, von Woedtke T. Risk assessment of a cold argon plasma jet in respect to its mutagenicity. Mutat Res. 2016;798:48–54.CrossRefGoogle Scholar
  153. 153.
    Hay ED. Cell biology of extracellular matrix. New York: Springer Science & Business Media; 2013.Google Scholar
  154. 154.
    Fenech M, Chang W, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res. 2003;534(1):65–75.PubMedCrossRefGoogle Scholar
  155. 155.
    Fenech M. Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res. 2006;600(1):58–66.PubMedCrossRefGoogle Scholar
  156. 156.
    Fenech M. Cytokinesis-block micronucleus cytome assay. Nat Protoc. 2007;2(5):1084–104.PubMedCrossRefGoogle Scholar
  157. 157.
    Boehm D, Heslin C, Cullen PJ, Bourke P. Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma. Sci Rep. 2016;6:21464.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001;276(45):42462–7.PubMedCrossRefGoogle Scholar
  159. 159.
    Hirst AM, Frame FM, Maitland NJ, O’Connell D. Low temperature plasma causes double-strand break DNA damage in primary epithelial cells cultured from a human prostate tumor. IEEE Trans Plasma Sci. 2014;42(10):2740–1.CrossRefGoogle Scholar
  160. 160.
    Kalghatgi S, Kelly CM, Cerchar E, Torabi B, Alekseev O, Fridman A, Friedman G, Azizkhan-Clifford J. Effects of non-thermal plasma on mammalian cells. PLoS One. 2011;6(1):e16270.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Schlegel J, Köritzer J, Boxhammer V. Plasma in cancer treatment. Clin Plasma Med. 2013;1(2):2–7.CrossRefGoogle Scholar
  162. 162.
    Schmidt A, Rödder K, Hasse S, Masur K, Toups L, Lillig CH, von Woedtke T, Wende K, Bekeschus S. Redox-regulation of activator protein 1 family members in blood cancer cell lines exposed to cold physical plasma-treated medium. Plasma Process Polym. 2016;13(12):1179–88.CrossRefGoogle Scholar
  163. 163.
    Ahmed K, Tabuchi Y, Kondo T. Hyperthermia: an effective strategy to induce apoptosis in cancer cells. Apoptosis. 2015;20(11):1411–9.PubMedCrossRefGoogle Scholar
  164. 164.
    Rybak P, Hoang A, Bujnowicz L, Bernas T, Berniak K, Zarębski M, Darzynkiewicz Z, Dobrucki J. Low level phosphorylation of histone H2AX on serine 139 (γH2AX) is not associated with DNA double-strand breaks. Oncotarget. 2016;7(31):49574.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Collins AR. The comet assay for DNA damage and repair. Mol Biotechnol. 2004;26(3):249.PubMedCrossRefGoogle Scholar
  166. 166.
    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki Y. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35(3):206–21.PubMedCrossRefGoogle Scholar
  167. 167.
    Iseki S, Nakamura K, Hayashi M, Tanaka H, Kondo H, Kajiyama H, Kano H, Kikkawa F, Hori M. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl Phys Lett. 2012;100(11):113702.CrossRefGoogle Scholar
  168. 168.
    Nagata S. Apoptotic DNA fragmentation. Exp Cell Res. 2000;256(1):12–8.PubMedCrossRefGoogle Scholar
  169. 169.
    Schmidt A, Bekeschus S, Wende K, Vollmar B, Woedtke T. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp Dermatol. 2016;26(2):156–62.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kristian Wende
    • 1
  • Anke Schmidt
    • 2
  • Sander Bekeschus
    • 1
  1. 1.Center for Innovation Competence (ZIK), Plasmatis—Plasma Plus Cell at Leibniz Institute for Plasma Science and Technology (INP Greifswald)GreifswaldGermany
  2. 2.Leibniz Institute for Plasma Science and Technology (INP Greifswald)GreifswaldGermany

Personalised recommendations