Organic Aerosols in South and East Asia: Composition and Sources

Chapter
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)

Abstract

Atmospheric aerosol loadings are high in South and East Asia because of extensive economic development in India and China. Asian aerosols are further transported over the outflow regions of the Northern Hemisphere. Organic aerosols (OA) are composed of a complex mixture of many compounds and represent a large fraction of fine particulate matter in the atmosphere. OA can significantly impact the Earth’s climate system and cause adverse effects on human health. To illustrate the current state of knowledge of OA in South and East Asia, we describe the concentrations of carbonaceous components and their stable carbon (13C) and radiocarbon isotope ratios, molecular composition and distributions of OA including marker species, 13C isotopic compositions of dicarboxylic acids and related compounds in the South and East Asian atmosphere based on a survey of literature. We further discuss possible primary sources and secondary formation and transformation pathways of OA in South and East Asia.

Keywords

Organic aerosols South and East Asia Measurements 

References

  1. Aggarwal SG, Kawamura K (2008) Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long-range atmospheric transport. J Geophys Res 113:D14301.  https://doi.org/10.1029/2007JD009365 CrossRefGoogle Scholar
  2. Aggarwal SG, Kawamura K (2009) Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: implication for aging of water-soluble organic fraction. Atmos Environ 43:2532–2540CrossRefGoogle Scholar
  3. Aggarwal SG, Kawamura K, Umarji GS, Tachibana E, Patil RS, Gupta PK (2013) Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: sources of organic aerosols and atmospheric processing. Atmos Chem Phys 13:4667–4680CrossRefGoogle Scholar
  4. Albrecht B (1989) Aerosols, cloud microphysics and fractional cloudiness. Science 245:1227–1230CrossRefGoogle Scholar
  5. Andreae MO, Crutzen PJ (1997) Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 276:1052–1058CrossRefGoogle Scholar
  6. Asa-Awuku A et al (2011) Airborne cloud condensation nuclei measurements during the 2006 Texas air quality study. J Geophys Res 116:D11201.  https://doi.org/10.1029/2010JD014874 CrossRefGoogle Scholar
  7. Badarinath KVS, Kharol SK, Latha KM, Chand TR, Prasad VK, Jyothsna AN, Samatha K (2007) Multiyear ground-based and satellite observations of aerosol properties over a tropical urban area in India. Atmos Sci Lett 8(1):7–13CrossRefGoogle Scholar
  8. Badarinath KVS, Sharma AR, Kharol SK, Prasad VK (2009) Variations in CO, O3 and black carbon aerosol mass concentrations associated with planetary boundary layer (PBL) over tropical urban environment in India. J Atmos Chem 62(1):73–86CrossRefGoogle Scholar
  9. Baltensperger U et al (2008) Combined determination of the chemical composition and of health effects of secondary organic aerosols: the POYSOA project. J Aerosol Med Pulm Drug Deliv 21(1):145–154CrossRefGoogle Scholar
  10. Cao JJ et al (2007) Spatial and seasonal distributions of carbonaceous aerosols over China. J Geophys Res 112:D22S11.  https://doi.org/10.1029/2006JD008205 CrossRefGoogle Scholar
  11. Carmichael GR et al (2009) Asian aerosols: current and year 2030 distributions and implications to human health and regional climate change. Environ Sci Technol 43:5811–5817CrossRefGoogle Scholar
  12. Carrico CM, Bergin MH, Shrestha AB, Dibb JE, Gomes L, Harris JM (2003) The importance of carbon and mineral dust to seasonal aerosol properties in the Nepal Himalaya. Atmos Environ 37:2811–2824CrossRefGoogle Scholar
  13. Castro LM, Pio CA, Harrison RM, Smith DJT (1999) Carbonaceous aerosol in urban and rural European atmosphere: estimation of secondary organic carbon concentrations. Atmos Environ 33:2771–2781CrossRefGoogle Scholar
  14. Chowdhury Z, Zheng M, Schauer JJ, Sheesley RJ, Salmon LG, Cass GR, Russell AG (2007) Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian cities. J Geophys Res 112:D15303.  https://doi.org/10.1029/2007JD008386 CrossRefGoogle Scholar
  15. Claeys M et al (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303:1173–1176CrossRefGoogle Scholar
  16. Cong Z, Kawamura K, Kang S, Fu P (2015) Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids. Sci Rep 5:9580.  https://doi.org/10.1038/srep09580. CrossRefGoogle Scholar
  17. Elbert W, Taylor PE, Andreae MO, Poschl U (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos Chem Phys 7:4569–4588CrossRefGoogle Scholar
  18. Fu J et al (2003) Persistent organic pollutants in environment of the Pearl River Delta, China: an overview. Chemosphere 52:1411–1422CrossRefGoogle Scholar
  19. Fu PQ, Kawamura K, Okuzawa K, Aggarwal SG, Wang G, Kanaya Y, Wang Z (2008) Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain. J Geophys Res 113:D19107.  https://doi.org/10.1029/2008JD009900 CrossRefGoogle Scholar
  20. Fu PQ, Kawamura K, Pavuluri CM, Swaminathan T, Chen J (2010a) Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation. Atmos Chem Phys 10:2663–2689CrossRefGoogle Scholar
  21. Fu PQ, Kawamura K, Kanaya Y, Wang ZF (2010b) Contributions of biogenic volatile organic compounds to the formation of secondary organic aerosols over Mt. Tai, Central East China. Atmos Environ 44:4817–4826CrossRefGoogle Scholar
  22. Fu PQ, Kawamura K, Kobayashi M, Simoneit BRT (2012a) Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: significant contributions of airborne pollen and Asian dust in spring. Atmos Environ 55:234–239CrossRefGoogle Scholar
  23. Fu PQ et al (2012b) Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning. Atmos Chem Phys 12:8359–8375CrossRefGoogle Scholar
  24. Fuzzi S et al (2006) Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos Chem Phys 6:2017–2038CrossRefGoogle Scholar
  25. Guazzotti SR, Coffee KR, Prather KA (2001) Continuous measurements of size resolved particle chemistry during INDOEX-IFP 99. J Geophys Res 106(22):28,607–28,627CrossRefGoogle Scholar
  26. Guazzotti SA et al (2003) Characterization of carbonaceous aerosols outflow from India and Arabia: biomass/biofuel burning and fossil fuel combustion. J Geophys Res 108(D15):4485.  https://doi.org/10.1029/2002JD003277 CrossRefGoogle Scholar
  27. Guo S et al (2012) Primary sources and secondary formation of organic aerosols in Beijing, China. Environ Sci Technol 46:9846−9853Google Scholar
  28. Gustafsson Ö et al (2009) Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323:495–498CrossRefGoogle Scholar
  29. Hallquist M et al (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236CrossRefGoogle Scholar
  30. Hegde P, Kawamura K (2012) Seasonal variations of water-soluble organic carbon, dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in Central Himalayan aerosols. Atmos Chem Phys 12:6645–6665CrossRefGoogle Scholar
  31. Ho KF, Cao JJ, Lee SC, Kawamura K, Zhang RJ, Chow JC, Watson JG (2007) Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China. J Geophys Res 112:D22S27.  https://doi.org/10.1029/2006JD008011 CrossRefGoogle Scholar
  32. Hoffmann T, Odum JR, Bowman F, Collins D, Klockow D, Flagan RC, Seinfeld JH (1997) Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J Atmos Chem 26:189–222CrossRefGoogle Scholar
  33. Huang Y, Dickinson RE, Chameides WL (2006) Impact of aerosol indirect effect on surface temperature over East Asia. Proc Natl Acad Sci U S A 103:4371–4376CrossRefGoogle Scholar
  34. Huebert BT, Bates T, Russell PB, Shi GY, Kim YJ, Kawamura K, Carmichael G, Nakajima T (2003) An overview of ACE-Asia: strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J Geophys Res 108(D23):8633.  https://doi.org/10.1029/2003JD003550 CrossRefGoogle Scholar
  35. Jacob DJ, Crawford JH, Kleb MM, Connors VE, Bendura RJ, Raper JL, Sachse GW, Gille JC (2003) The Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: design, execution, and first results. J Geophys Res 108(D20):9000.  https://doi.org/10.1029/2002JD003276 CrossRefGoogle Scholar
  36. Jacobson MC, Hansson H-C, Noone KJ, Charlson RJ (2000) Organic atmospheric aerosols: review and state of the science. Rev Geophys 38(2):267–294CrossRefGoogle Scholar
  37. Jaoui M, Lewandowski M, Kleindienst TE, Offenberg JH, Edney EO (2007) β-Caryophyllinic acid: an atmospheric tracer for β-caryophyllene secondary organic aerosol. Geophys Res Lett 34:L05816.  https://doi.org/10.1029/2006GL028827 CrossRefGoogle Scholar
  38. Jha AK, Sharma C, Singh N, Ramesh R, Purvaja R, Gupta PK (2008) Greenhouse gas emissions from municipal solid waste management in Indian mega-cities: a case study of Chennai landfill sites. Chemosphere 71:750–758CrossRefGoogle Scholar
  39. Jung J, Tsatsral B, Kim YJ, Kawamura K (2010) Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls. J Geophys Res 115:D22203.  https://doi.org/10.1029/2010JD014339 CrossRefGoogle Scholar
  40. Kanakidou M et al (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123CrossRefGoogle Scholar
  41. Kawamura K (1993) Identification of C2–C10 ω-oxocarboxylic acids, pyruvic acid and C2–C3 α-dicarbonyls in wet precipitation and aerosol samples by capillary GC and GC-MS. Anal Chem 65:3505–3511CrossRefGoogle Scholar
  42. Kawamura K, Bikkina S (2016) A review of dicarboxylic acids and related compounds in atmospheric aerosols: molecular distributions, sources and transformation. Atmos Res 170:140–160CrossRefGoogle Scholar
  43. Kawamura K, Gagosian RB (1987) Implications of ω-oxocarboxylic acids in the remote marine atmosphere for photo-oxidation of unsaturated fatty acids. Nature 325:330–332CrossRefGoogle Scholar
  44. Kawamura K, Ikushima K (1993) Seasonal change in the distribution of dicarboxylic acids in the urban atmosphere. Environ Sci Technol 27:2227–2235CrossRefGoogle Scholar
  45. Kawamura K, Sakaguchi F (1999) Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. J Geophys Res 104(D3):3501–3509CrossRefGoogle Scholar
  46. Kawamura K, Watanabe T (2004) Determination of stable carbon isotopic compositions of low molecular weight dicarboxylic acids and ketocarboxylic acids in atmospheric aerosol and snow samples. Anal Chem 76:5762–5768CrossRefGoogle Scholar
  47. Kawamura K, Yasui O (2005) Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere. Atmos Environ 39:1945–1960CrossRefGoogle Scholar
  48. Kawamura K, Kosaka M, Sempere R (1995) Distributions and seasonal changes in hydrocarbons in urban aerosols and rain waters. Chikyu Kagaku (Geochemistry) 29:1–15. (in Japanese with English abstract)Google Scholar
  49. Kawamura K, Kasukabe H, Barrie LA (1996) Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in Arctic aerosols: one year of observations. Atmos Environ 30:1709–1722CrossRefGoogle Scholar
  50. Kawamura K, Ishimura Y, Yamazaki K (2003) Four years’ observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific. Global Biogeochem Cy 17(1):1003.  https://doi.org/10.1029/2001GB001810 CrossRefGoogle Scholar
  51. Kawamura K, Kobayashi M, Tsubonuma N, Mochida M, Watanabe T, Lee M (2004) Organic and inorganic compositions of marine aerosols from East Asia: seasonal variations of water-soluble dicarboxylic acids, major ions, total carbon and nitrogen, and stable C and N isotopic composition. In: Hill et al (ed) Geochemical investigation in earth and space science: a tribute to Isaac R. Kaplan. The Geochemical Society, Publication No. 9, pp 243–265Google Scholar
  52. Kawamura K, Tachibana E, Okuzawa K, Aggarwal SG, Kanaya Y, Wang ZF (2013) High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season. Atmos Chem Phys 13:8285–8302CrossRefGoogle Scholar
  53. Kirillova EN, Andersson A, Tiwari S, Srivastava AK, Bisht DS, Gustafsson Ö (2014) Water-soluble organic carbon aerosols during a full New Delhi winter: isotope-based source apportionment and optical properties. J Geophys Res Atmos 119:3476–3485CrossRefGoogle Scholar
  54. Kleindienst TE, Jaoui M, Lewandowski M, Offenberg JH, Lewis CW, Bhave PV, Edney EO (2007) Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southern US location. Atmos Environ 41:8288–8300CrossRefGoogle Scholar
  55. Koch D (2001) Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. J Geophys Res 106:20,311–20,332CrossRefGoogle Scholar
  56. Kolb CE, Worsnop DR (2012) Chemistry and composition of atmospheric aerosol particles. Annu Rev Phys Chem 63:471–491CrossRefGoogle Scholar
  57. Lelieveld J et al (2001) The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 291:1031–1036CrossRefGoogle Scholar
  58. Lim H-J, Turpin BJ (2002) Origins of primary and secondary organic aerosol in Atlanta: results of time-resolved measurements during the Atlanta supersite experiment. Environ Sci Technol 36:4489–4496CrossRefGoogle Scholar
  59. Liu JG, Diamond J (2005) China’s environment in a globalizing world. Nature 435:1179–1186CrossRefGoogle Scholar
  60. Mayol-Bracero OL et al (2002) Carbonaceous aerosols over the Indian Ocean during the Indian Ocean Experiement (INDOEX): chemical characterization, optical properties, and probable sources. J Geophys Res 107(D19):8030.  https://doi.org/10.1029/2000JD000039 CrossRefGoogle Scholar
  61. McDow SR, Huntzicker JJ (1990) Vapor adsorption artifact in the sampling of organic aerosol: face velocity effects. Atmos Environ 24:2563–2571CrossRefGoogle Scholar
  62. Miyazaki Y, Aggarwal SG, Singh K, Gupta PK, Kawamura K (2009) Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: characteristics and formation processes. J Geophys Res 114:D19206.  https://doi.org/10.1029/2009JD011790 CrossRefGoogle Scholar
  63. Miyazaki Y, Kawamura K, Jung J, Furutani H, Uematsu M (2011) Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific. Atmos Chem Phys 11:3037–3049CrossRefGoogle Scholar
  64. Mochida M, Kawabata A, Kawamura K, Hatsushika H, Yamazaki K (2003) Seasonal variation and origins of dicarboxylic acids in the marine atmosphere over the western North Pacific. J Geophys Res 108(D6):4193.  https://doi.org/10.1029/2002JD002355 CrossRefGoogle Scholar
  65. Nakajima T et al (2007) Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia. J Geophys Res 112:D24S91.  https://doi.org/10.1029/2007JD009009 CrossRefGoogle Scholar
  66. Narukawa M, Kawamura K, Takeuchi N, Nakajima T (1999) Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires. Geophys Res Lett 26:3101–3104CrossRefGoogle Scholar
  67. Novakov T, Penner JE (1993) Large contribution of organic aerosols to cloud-condensation-nuclei concentrations. Nature 365:823–826CrossRefGoogle Scholar
  68. Novakov T, Andreae MO, Gabriel R, Kirchstetter TW, Mayol-Bracer OL, Ramanathan V (2000) Origin of carbonaceouase rosolso ver the tropical Indian Ocean: biomass burning or fossil fuels? Geophys Res Lett 27(24):4061–4064CrossRefGoogle Scholar
  69. Pavuluri CM, Kawamura K, Tachibana E, Swaminathan T (2010a) Elevated nitrogen isotope ratios of tropical Indian aerosols from chennai: implication for the origins of aerosol nitrogen in South and Southeast Asia. Atmos Environ 44:3597–3604CrossRefGoogle Scholar
  70. Pavuluri CM, Kawamura K, Swaminathan T (2010b) Water-soluble organic carbon, dicarboxylic acids, ketoacids, and α-dicarbonyls in the tropical Indian aerosols. J Geophys Res 115:D11302.  https://doi.org/10.1029/2009JD012661 CrossRefGoogle Scholar
  71. Pavuluri CM, Kawamura K, Swaminathan T, Tachibana E (2011a) Stable carbon isotopic compositions of total carbon, dicarboxylic acids and glyoxylic acid in the tropical Indian aerosols: implications for sources and photochemical processing of organic aerosols. J Geophys Res 116:D18307.  https://doi.org/10.1029/2011JD015617 CrossRefGoogle Scholar
  72. Pavuluri CM, Kawamura K, Aggarwal SG, Swaminathan T (2011b) Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical aerosols from Indian region. Atmos Chem Phys 11:8215–8230CrossRefGoogle Scholar
  73. Pavuluri CM, Kawamura K, Uchida M, Kondo M, Fu P (2013) Enhanced modern carbon and biogenic organic tracers in Northeast Asian aerosols during spring/summer. J Geophys Res Atmos 118:2362–2371CrossRefGoogle Scholar
  74. Pavuluri CM, Kawamura K, Mihalopoulos N, Swaminathan T (2015a) Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls. Atmos Chem Phys 15:7999–8012CrossRefGoogle Scholar
  75. Pavuluri CM, Kawamura K, Mihalopoulos N, PQ F (2015b) Characteristics, seasonality and sources of inorganic ions and trace metals in Northeast Asian aerosols. Environ Chem 12:338–349CrossRefGoogle Scholar
  76. Pavuluri CM, Kawamura K, PQ F (2015c) Atmospheric chemistry of nitrogenous aerosols in northeastern Asia: biological sources and secondary formation. Atmos Chem Phys 15:9883–9896CrossRefGoogle Scholar
  77. Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem 44:7520–7540CrossRefGoogle Scholar
  78. Ram K, Sarin MM, Hegde P (2008) Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: sources and temporal variability. Atmos Environ 42:6785–6796CrossRefGoogle Scholar
  79. Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001a) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124CrossRefGoogle Scholar
  80. Ramanathan V et al (2001b) Indian Ocean Experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res 106:28,371–28,398CrossRefGoogle Scholar
  81. Rengarajan R, Sarin MM, Sudheer AK (2007) Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J Geophys Res 112:D21307.  https://doi.org/10.1029/2006JD008150 CrossRefGoogle Scholar
  82. Rogge WF, Mazurek M, Hildemann LM, Cass GR (1993) Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmos Environ 27A:1309–1330CrossRefGoogle Scholar
  83. Salam A, Bauer H, Kassin K, Ullah SM, Puxbaum H (2003) Aerosol chemical characteristics of a mega-city in Southeast Asia (Dhaka-Bangladesh). Atmos Environ 37:2517–2528CrossRefGoogle Scholar
  84. Saxena P, Hildemann LM (1996) Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. J Atmos Chem 24:57–109CrossRefGoogle Scholar
  85. Schauer JJ, Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1996) Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 30:3837–3855CrossRefGoogle Scholar
  86. Simoneit BRT, Sheng GY, Chen XJ, JM F, Zhang J, YP X (1991) Molecular marker study of extractable organicmatter in aerosols from urban areas of China. Atmos Environ 25:2111–2129CrossRefGoogle Scholar
  87. Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Rogge WF, Cass GR (1999) Levoglucosan: a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 33:173–182CrossRefGoogle Scholar
  88. Simoneit BRT, Kobayashi M, Mochida M, Kawamura K, Lee M, Lim H-J, Turpin BJ, Komazaki Y (2004) Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign. J Geophys Res 109:D19S10.  https://doi.org/10.1029/2004JD004598 Google Scholar
  89. Smith DJT, Harrison RM, Luhana L, Pio CA, Castro LM, Tariq MN, Hayat S, Quraishi T (1996) Concentrations of particulate airborne polycyclic aromatic hydrocarbons and metals collected in Lahore, Pakistan. Atmos Environ 30(23):4031–4040CrossRefGoogle Scholar
  90. Stone EA, Schauer JJ, Pradhan BB, Dangol PM, Habib G, Venkataraman C, Ramanathan V (2010) Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas. J Geophys Res 115:D06301.  https://doi.org/10.1029/2009JD011881 Google Scholar
  91. Stuvier M, Polach HA (1977) Reporting of 14C data. Radiocarbon 19:355–363CrossRefGoogle Scholar
  92. Sudheer AK, Sarin MM (2008) Carbonaceous aerosols in MABL of Bay of Bengal: influence of continental outflow. Atmos Environ 42:4089–4100CrossRefGoogle Scholar
  93. Tanaka A, Yoneda M, Uchida M, Uehiro T, Shibata Y, Morita M (2000) Recent advances in 14C measurement at NIES-TERRA. Nucl Instrum Meth B 172:107–111CrossRefGoogle Scholar
  94. TEDDY (1997) Tata Energy Directory and Data Yearbook 1996–1997. Tata Energy Research Institute, Lodhi Road, New DelhiGoogle Scholar
  95. Turekian VC, Macko SA, Keene WC (2003) Concentrations, isotopic compositions, and sources of size-resolved, particulate organic carbon and oxalate in near-surface marine air at Bermuda during spring. J Geophys Res 108(D5):4157.  https://doi.org/10.1029/2002JD002053 CrossRefGoogle Scholar
  96. Turpin BJ, Huntzicker JJ (1995) Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ 29(23):3527–3544CrossRefGoogle Scholar
  97. Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Tech 35:602–610CrossRefGoogle Scholar
  98. Turpin BJ, Huntzicker JJ, Hering SV (1994) Investigation of organic aerosol sampling artifacts in the Los Angeles basin. Atmos Environ 28:3061–3071CrossRefGoogle Scholar
  99. Twomey S (1977) Influence of pollution on the short-wave albedo of clouds. J Atmos Sci 34:1149–1152CrossRefGoogle Scholar
  100. Uchida M, Shibata Y, Yoneda M, Kobayashi T, Morita M (2004) Technical progress in AMS microscale radiocarbon analysis. Nucl Instrum Meth B 223:313–317CrossRefGoogle Scholar
  101. Uno I, Eguchi K, Yumimoto K, Liu Z, Hara Y, Sugimoto N, Shimizu A, Takemura T (2011) Large Asian dust layers continuously reached North America in April 2010. Atmos Chem Phys 11:7333–7341CrossRefGoogle Scholar
  102. Vadrevu KP, Lasko K, Giglio L, Justice C (2014) Analysis of Southeast Asian pollution episode during June 2013 using satellite remote sensing datasets. Environ Pollut 195:245–256CrossRefGoogle Scholar
  103. Vadrevu KP, Lasko K, Giglio L, Justice C (2015) Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia. Environ Res Lett 10(10):105003CrossRefGoogle Scholar
  104. Venkataraman C, Reddy CK, Josson S, Reddy MS (2002) Aerosol size and chemical characteristics at Mumbai, India, during the INDOEX-IFP (1999). Atmos Environ 36:1979–1991CrossRefGoogle Scholar
  105. Venkataraman C, Habib G, Eiguren-Fernandez A, Miguel AH, Friedlander SK (2005) Residential biofuels in South Asia: carbonaceous aerosol emissions and climate impacts. Science 307:1454–1456CrossRefGoogle Scholar
  106. Wang G, Kawamura K (2005) Molecular characteristics of urban organic aerosols from Nanjing: a case study of a mega-city in China. Environ Sci Technol 39:7430–7438CrossRefGoogle Scholar
  107. Wang H, Kawamura K, Shooter D (2005) Carbonaceous and ionic components in wintertime atmospheric aerosols from two New Zealand cities: implications for solid fuel combustion. Atmos Environ 39:5865–5875CrossRefGoogle Scholar
  108. Wang G, Kawamura K, Lee SC, Ho KF, Cao JJ (2006) Molecular, seasonal, and spatial distributions of organic aerosols from fourteen chinese cities. Environ Sci Technol 40:4619–4625CrossRefGoogle Scholar
  109. Wang G, Kawamura K, Zhao X, Li Q, Dai Z, Niu H (2007) Identification, abundance and seasonal variation of anthropogenic organic aerosols from a mega-city in China. Atmos Environ 41:407–416CrossRefGoogle Scholar
  110. Yamamoto S, Kawamura K, Seki O (2011) Long-range atmospheric transport of terrestrial biomarkers by the Asian winter monsoon: evidence from fresh snow from Sapporo, northern Japan. Atmos Environ 45:3553–3560CrossRefGoogle Scholar
  111. Yu S, Dennis RL, Bhave PV, Eder BK (2004) Primary and secondary organic aerosols over the United States: estimates on the basis of observed organic carbon (OC) and elemental carbon (EC), and air quality modeled primary OC/EC ratios. Atmos Environ 38:5257–5268CrossRefGoogle Scholar
  112. Zhang XY, Wang YQ, Zhang XC, Guo W, Gong SL (2008) Carbonaceous aerosol composition over various regions of China during 2006. J Geophys Res 113:D14111.  https://doi.org/10.1029/2007JD009525 CrossRefGoogle Scholar
  113. Zhang YL et al (2015) Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmos Chem Phys 15:1299–1312CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Surface-Earth System ScienceTianjin UniversityTianjinChina
  2. 2.Chubu Institute for Advanced StudiesChubu UniversityKasugaiJapan

Personalised recommendations