Advertisement

Novel Test for the Equality of Continuous Curves with Homoscedastic or Heteroscedastic Measurement Errors

  • Zhongfa ZhangEmail author
  • Yarong Yang
  • Jiayang Sun
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 218)

Abstract

Testing equality of two curves occurs often in functional data analysis. In this paper, we develop procedures for testing if two curves measured with either homoscedastic or heteroscedastic errors are equal. The method is applicable to a general class of curves. Compared with existing tests, ours does not require repeated measurements to obtain the variances at each of the explanatory values. Instead, our test calculates the overall variances by pooling all of the data points. The null distribution of the test statistic is derived and an approximation formula to calculate the p value is developed when the heteroscedastic variances are either known or unknown. Simulations are conducted to show that this procedure works well in the finite sample situation. Comparisons with other test procedures are made based on simulated data sets. Applications to our motivating example from an environmental study will be illustrated. An R package was created for ease of general applications.

Keywords

Functional data analysis Hypothesis test Local regression Tube formula 

2011 MSC

Primary 62G08 62J02. Secondary 93E14 62G10 62H15 

References

  1. 1.
    ATSDR: The nature and extent of lead poisoning in children in the united states: a report to congress. Technical report, Agency for Toxic Substances and Disease Registry, Atlanta: US Department of Health and Human Services, Public Health Service(1988)Google Scholar
  2. 2.
    Besse, P., Ramsay, J.O.: Principle components analysis of sampled functions. Psychometrika 51(2), 285–311 (1986).  https://doi.org/10.1007/bf02293986MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chakravarti, I.M., Laha, R.G., Roy, J.: Handbook of Methods of Applied Statistics, Vol. I. John Wiley and Sons (1967)Google Scholar
  4. 4.
    Clive, R.: Loader: Bandwidth selection: classical or plug-in? Ann. Statist. 27(2), 415–438 (1999)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cleveland, W., Devin, S.: Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83(403), 596–610 (1988).  https://doi.org/10.1080/01621459.1988.10478639CrossRefzbMATHGoogle Scholar
  6. 6.
    Dai, J., Sperlich, S.: Simple and effective boundary correction for kernel densities and regression with an application to the world income and Engel curve estimation. Comput. Stat. Data Anal. Elsevier 54(11), 2487–2497 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fan, J., Lin, S.: Test of significance when data are curves. J. Am. Stat. Assoc. 93, 1007–1021 (1998).  https://doi.org/10.1080/01621459.1998.10473763MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hotelling, H.: Tubes and spheres in n-spaces, and a class of statistical problems. Am. J. Math. 61, 440–460 (1939)MathSciNetCrossRefGoogle Scholar
  9. 9.
    James, G., Hastie, T.: Functional linear discriminant analysis for irregularly sampled curves. J. R. Stat. Soc. Ser. B 63(3), 533–550 (2001).  https://doi.org/10.1111/1467-9868.00297MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    James, W., Stein, C.: Estimation with quadratic loss. In: Proceedings of Fourth Berkeley Symposium on Mathematical Statistics and Probability Theory University of California Press, pp 361–380 (1961)Google Scholar
  11. 11.
    Johansen, S., Johnstone, I.: Hotelling’s theorem on the volume of tubes: some illustrations in simultaneous inference and data analysis. Ann. Stat. 18, 652–684 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kitska, D.J.: Simultaneous inference for functional linear models. Ph.D. thesis, Case Western Reserve University (2005)Google Scholar
  13. 13.
    Knowles, M., Siegmund, D.: On hotelling’s approach to testing for a nonlinear parameter in regression. Int. Stat. Rev. 57(3), 205–220 (1989).  https://doi.org/10.2307/1403794CrossRefzbMATHGoogle Scholar
  14. 14.
    Leurgans, S.E., Moyeed, R.A., Silverman, B.W.: Canonical correlation analysis when the data are curves. J. R. Stat. Soc. Ser. B 55(3), 725–740 (1993)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Loader, C.: Local Regression and Likelihood. Springer, New York (1999)Google Scholar
  16. 16.
    Naiman, D.Q.: Simultaneous confidence bounds in multiple regression using predictor variable constraints. J. Am. Stat. Assoc. 82, 214–219 (1987).  https://doi.org/10.2307/2289156MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Naiman, D.Q.: On volumes of tubular neighborhoods of spherical polyhedra and statistical inference. Ann. Stat. 18(2), 685–716 (1990)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Parzen, E.: An approach to time series analysis. Ann. Math. Stat. 32(4), 951–989 (1961)CrossRefGoogle Scholar
  19. 19.
    Ramsay, J., Daizell, C.: Some tools for functional data analysis. J. R. Stat. Soc. Ser. B 53(3), 539–572 (1991).  https://doi.org/10.2307/2345586MathSciNetCrossRefGoogle Scholar
  20. 20.
    Robbins, N., Zhang, Z., Sun, J., Ketterer, M., Lalumandier, J., Shulze, R.: Childhood lead exposure and uptake in teeth in the Cleveland area during the era of leaded gasoline. Sci. Total Environ. 408(19), 4118–27 (2010).  https://doi.org/10.1016/j.scitotenv.2010.04.060CrossRefGoogle Scholar
  21. 21.
    Shapiro, S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52(3 & 4), 591–611 (1965)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sun, J., Loader, C.: Simultaneous confidence bands for linear regression and smoothing. Ann. Stat. 22, 1328–1345 (1994).  https://doi.org/10.1214/aos/1176325631MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sun, J.: Tail probabilities of the maxima of gaussian random fields. Ann. Probab. 21(1), 34–71 (1993).  https://doi.org/10.1214/aop/1176989393MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sun, J.: Multiple comparisons for a large number of parameters. Biom. J. 43, 627–643 (2001).  https://doi.org/10.1002/1521-4036(200109)43:53.3.CO;2-6MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Weyl, H.: On the volume of tubes. Am. J. Math. 61(2), 461–472 (1939)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wang, J.-L., Chiou, J.-M., Mller1, H.-G.: Functional data analysis. Ann. Rev. Stat. Appl. 3, 257–295 (2016).  https://doi.org/10.1146/annurev-statistics-041715-033624CrossRefGoogle Scholar
  27. 27.
    Xintaras, C.: Impact of lead-contaminated soil on public health (1992). http://www.cdc.gov/search.do. (Technical report, Agency for Toxic Substances and Disease Registry)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of StatisticsCase Western Reserve UniversityClevelandUSA
  2. 2.Department of StatisticsNorth Dakota State UniversityFargoUSA

Personalised recommendations