Advertisement

Project Data Sphere and the Applications of Historical Patient Level Clinical Trial Data in Oncology Drug Development

  • Greg HatherEmail author
  • Ray Liu
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 218)

Abstract

As scientific data sharing initiatives become more popular, an increasing amount of oncology clinical trial data is becoming available to the public. This historical data has the potential to help improve the design and analysis of future studies of new oncology compounds. Project Data Sphere is one such public database of oncology studies, with patient level data from over 76,000 patients. Here, we review the contents of this database and describe several examples of how the data has been used or could potentially be used in drug development. Applications include population selection, historical comparisons, and identification of stratification factors.

Keywords

Oncology Data sharing Project Data Sphere Population selection Stratification Historical comparison 

References

  1. 1.
    Trialtrove. Informa PLC, London. https://pharmaintelligence.informa.com/products-and-services/data-and-analysis/trialtrove (2017). Last accessed 14 Aug 2017
  2. 2.
    Green, A.K., Reeder-Hayes, K.E., Corty, R.W., Basch, E., Milowsky, M.I., Dusetzina, S.B., Bennett, A.V., Wood, W.A.: The project data sphere initiative: accelerating cancer research by sharing data. Oncologist 20, 464-e20 (2015)CrossRefGoogle Scholar
  3. 3.
    Strom, B.L., Buyse, M., Hughes, J., Knoppers, B.M.: Data sharing, year 1—access to data from industry-sponsored clinical trials. New. Engl. J. Med. 371, 2052–2054 (2014)CrossRefGoogle Scholar
  4. 4.
    The YODA project summary of data inquiries and requests. Yale University, New Haven. http://yoda.yale.edu/summary-data-inquiries-and-requests (2017). Last accessed 14 Aug 2017
  5. 5.
    Pfizer Trial Data & Results. Pfizer Inc, New York. http://www.pfizer.com/science/clinical-trials/trial-data-and-results (2017). Last accessed 14 Aug 2017
  6. 6.
    Geifman, N., Bollyky, J., Bhattacharya, S., Butte, A.J.: Opening clinical trial data: are the voluntary data-sharing portals enough? BMC Med. 13, 280 (2015)Google Scholar
  7. 7.
    NCI Genomic Data Commons. National Cancer Institute, Bethesda. https://gdc.cancer.gov/ (2017). Last accessed 8 Oct 2017
  8. 8.
    NCI Genomic Data Commons. National Cancer Institute, Bethesda. https://gdc.cancer.gov/ (2017). Last accessed 8 Oct 2017
  9. 9.
    MMRF Researcher Gateway. Multiple Myeloma Research Foundation, Norwalk. https://research.themmrf.org/ (2017). Last accessed 8 Oct 2017
  10. 10.
    Project Data Sphere. Project Data Sphere, LLC. https://www.projectdatasphere.org/ (2017). Last accessed 14 Aug 2017
  11. 11.
    Wendling, T., Mistry, H., Ogungbenro, K., Aarons, L.: Predicting survival of pancreatic cancer patients treated with gemcitabine using longitudinal tumour size data. Canc. Chemo. and Pharmacol. 77, 927–938 (2016)CrossRefGoogle Scholar
  12. 12.
    Gill, B., Khoja, L., Hamilton, R.J., Abdallah, K., Pintilie, M., Joshua, A.M.: Project data sphere (PDS) in prostate cancer: a first look including concomitant medication use. Bone 1144, 19–78 (2015)Google Scholar
  13. 13.
    Geifman, N., Butte, A.J.: A patient-level data meta-analysis of standard-of-care treatments from eight prostate cancer clinical trials. Sci. Data 3, 160027 (2016)CrossRefGoogle Scholar
  14. 14.
    Abdallah, K., Hugh-Jones, C., Norman, T., Friend, S., Stolovitzky, G.: The Prostate Cancer DREAM Challenge: a community-wide effort to use open clinical trial data for the quantitative prediction of outcomes in metastatic prostate cancer. Oncologist 20, 459–460 (2015)CrossRefGoogle Scholar
  15. 15.
    Green, A.K., Corty, R.W., Wood, W.A., Meeneghan, M., Reeder-Hayes, K.E., Basch, E., Milowsky, M.I., Dusetzina, S.B.: Comparative effectiveness of mitoxantrone plus prednisone versus prednisone alone in metastatic castrate-resistant prostate cancer after docetaxel failure. Oncologist 20, 516–522 (2015)CrossRefGoogle Scholar
  16. 16.
    Romero, K., Ito, K., Rogers, J.A., Polhamus, D., Qiu, R., Stephenson, D., Mohs, R., Lalonde, R., Sinha, V., Wang, Y., Brown, D.: The future is now: Model-based clinical trial design for Alzheimer’s disease. Clin. Pharmacol. Ther. 97, 210–214 (2015)CrossRefGoogle Scholar
  17. 17.
    Fijal, B.A., Hall, J.M., Witte, J.S.: Clinical trials in the genomic era: effects of protective genotypes on sample size and duration of trial. Contemp. Clin. Trials. 21, 7–20 (2000)CrossRefGoogle Scholar
  18. 18.
    Williamson, F: Using External Patient Data in Clinical Trial Simulation. Paper presented at the Joint Statistical Meetings, session 530, McCormick Place, Chicago 30 July–4 August (2016)Google Scholar
  19. 19.
    Pocock, S.J.: The combination of randomized and historical controls in clinical trials. J. Chronic Dis. 29, 175–188 (1976)CrossRefGoogle Scholar
  20. 20.
    Signorovitch, J.E., Wu, E.Q., Andrew, P.Y., Gerrits, C.M., Kantor, E., Bao, Y., Gupta, S.R., Mulani, P.M.: Comparative effectiveness without head-to-head trials. Pharmacoeconomics 28, 935–945 (2010)CrossRefGoogle Scholar
  21. 21.
    Caro, J.J., Ishak, K.J.: No head-to-head trial? Simulate the missing arms. Pharmacoeconomics 28, 957–967 (2010)CrossRefGoogle Scholar
  22. 22.
    Dimopoulos, M.A., Orlowski, R.Z., Facon, T., Sonneveld, P., Anderson, K.C., Beksac, M., Benboubker, L., Roddie, H., Potamianou, A., Couturier, C. and Feng, H.: Retrospective matched-pairs analysis of bortezomib plus dexamethasone versus bortezomib monotherapy in relapsed multiple myeloma. Haematologica, 112037 (2014)Google Scholar
  23. 23.
    Selaru, P., Tang, Y., Huang, B., Polli, A., Wilner, K.D., Donnelly, E., Cohen, D.P.: Sufficiency of single-arm studies to support registration of targeted agents in molecularly selected patients with cancer: lessons from the clinical development of Crizotinib. Clin. Trans. Sci. 9, 63–73 (2016)CrossRefGoogle Scholar
  24. 24.
    Rubin, D.B.: Matching to remove bias in observational studies. Biometrics 29, 159–183 (1973)CrossRefGoogle Scholar
  25. 25.
    Kawamura, K., Ichikado, K., Suga, M., Yoshioka, M.: Efficacy of azithromycin for treatment of acute exacerbation of chronic fibrosing interstitial pneumonia: a prospective, open-label study with historical controls. Respiration 87, 478–484 (2014)CrossRefGoogle Scholar
  26. 26.
    Gökbuget, N., Kelsh, M., Chia, V., Advani, A., Bassan, R., Dombret, H., Doubek, M., Fielding, A.K., Giebel, S., Haddad, V., Hoelzer, D.: Blinatumomab vs historical standard therapy of adult relapsed/refractory acute lymphoblastic leukemia. Blood Cancer J. 6, 473 (2016)CrossRefGoogle Scholar
  27. 27.
    Robins, J.M., Rotnitzky, A., Zhao, L.P.: Estimation of regression coefficients when some regressors are not always observed. J. Am. Stat. Assoc. 89, 846–866 (1994)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zelen, M.: The randomization and stratification of patients to clinical trials. J. Chronic Dis. 27, 365–375 (1974)CrossRefGoogle Scholar
  29. 29.
    Yusuf, S., Wittes, J., Probstfield, J., Tyroler, H.A.: Analysis and interpretation of treatment effects in subgroups of patients in randomized clinical trials. JAMA 266, 93–98 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Takeda Pharmaceuticals Inc.CambridgeUSA

Personalised recommendations