The Origin of Personalized Medicine and the Systems Biology Revolution

  • Marco Carraro
  • Silvio C. E. Tosatto
  • Rosario Rizzuto
Chapter

Abstract

The complete sequencing of the human genome has opened up many avenues of research. Among these, the notion of personalized medicine is becoming increasingly common. In this chapter, we review the major implications of the genomic era for improving the diagnosis and treatment of diseases. Medicine has witnessed several paradigm shifts in the course of the last two centuries, and personalized medicine is bound to be seen in the same way. Sequencing technology has evolved by orders of magnitude, coming into the range of $1000 for a complete human genome. Diseases are increasingly diagnosed with the help of genomics data. Combination with other high-throughput omics data further provides novel opportunities to improve treatment in the light of systems biology. However, much work still needs to be done to provide adequate analysis for personalized medicine to fulfill its potential. Regulatory challenges also lie in wait in order to guarantee that the right conclusions are drawn from the novel data. Despite the current limitations, personalized medicine is revolutionizing clinical practice.

References

  1. 1.
    Roses AD (2000) Pharmacogenetics and the practice of medicine. Nature 405(6788):857–865CrossRefPubMedGoogle Scholar
  2. 2.
    Mayor S (2007) Genome sequence of one individual is published for first time. BMJ 335:530–531. doi: 10.1136/bmj.39335.753009.94PubMedPubMedCentralGoogle Scholar
  3. 3.
    Nyholt DR, Yu CE, Visscher PM (2009) On Jim Watson’s APOE status: genetic information is hard to hide. Eur J Hum Genet 17(2):147–149. doi: 10.1038/ejhg.2008.198CrossRefPubMedGoogle Scholar
  4. 4.
    Davies K (2015) The $1000 genome: the revolution in DNA sequencing and the new era of personalized medicine. Simon and Schuster. Free Press, New YorkGoogle Scholar
  5. 5.
    Koschmann TD (ed) (1996) CSCL, Theory and practice of an emerging paradigm. Routledge, LondonGoogle Scholar
  6. 6.
    Ferriman A (2007) BMJ readers choose the “sanitary revolution” as greatest medical advance since 1840. BMJ 334(7585):111. doi: 10.1136/bmj.39097.611806.DBCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Lane HJ, Blum N, Fee E (2010) Oliver Wendell Holmes (1809–1894) and Ignaz Philipp Semmelweis (1818–1865): preventing the transmission of puerperal fever. Am J Public Health 100:1008–1009. doi: 10.2105/AJPH.2009.185363CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front. Microbiol 1:134. doi: 10.3389/fmicb.2010.00134CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Robinson DH, Toledo AH (2012) Historical development of modern anesthesia. J Invest Surg 25(3):141–149. doi: 10.3109/08941939.2012.690328CrossRefPubMedGoogle Scholar
  10. 10.
    Alyass A, Turcotte M, Meyre D (2015) From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genomics 8:33. doi: 10.1186/s12920-015-0108-yCrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen R, Snyder M (2012) Systems biology: personalized medicine for the future? Curr Opin Pharmacol 12:623–628. doi: 10.1016/j.coph.2012.07.011CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tremblay J, Hamet P (2013) Role of genomics on the path to personalized medicine. Metabolism 62(Suppl 1):S2–S5. doi: 10.1016/j.metabol.2012.08.023CrossRefPubMedGoogle Scholar
  13. 13.
    Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lønning PE, Børresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Campeau PM, Foulkes WD, Tischkowitz MD (2008) Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum Genet 124(1):31–42CrossRefPubMedGoogle Scholar
  15. 15.
    Easton DF (1999) How many more breast cancer predisposition genes are there? Breast Cancer Res 1(1):14–17CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pal T, Permuth-Wey J, Betts JA, Krischer JP, Fiorica J, Arango H, LaPolla J, Hoffman M, Martino MA, Wakeley K, Wilbanks G, Nicosia S, Cantor A, Sutphen R (2005) BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer 104(12):2807–2816CrossRefPubMedGoogle Scholar
  17. 17.
    Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, McGuire AL, Nussbaum RL, O’Daniel JM, Ormond KE, Rehm HL, Watson MS, Williams MS, Biesecker LG; American College of Medical Genetics and Genomics (2013) ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 15(7):565–574Google Scholar
  18. 18.
    Hood L, Flores M (2012) A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N Biotechnol 29(6):613–624CrossRefPubMedGoogle Scholar
  19. 19.
    Duffy DJ (2016) Problems, challenges and promises: perspectives on precision medicine. Brief Bioinform 17(3):494–504CrossRefPubMedGoogle Scholar
  20. 20.
    Mardis ER (2010) The $1000 genome, the $100,000 analysis? Genome Med 2(11):84CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Marco Carraro
    • 1
  • Silvio C. E. Tosatto
    • 1
  • Rosario Rizzuto
    • 1
  1. 1.Department of Biomedical SciencesUniversity of PadovaPadovaItaly

Personalised recommendations