Antileishmanial and Antitrypanosomal Activities of Flavonoids

  • Flore Nardella
  • Jean-Baptiste Gallé
  • Mélanie Bourjot
  • Bernard Weniger
  • Catherine Vonthron-Sénécheau
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 19)

Abstract

This chapter focuses on the ability of flavonoid aglycones and glycosides to inhibit the growth of protozoan parasites of the genera Leishmania and Trypanosoma in different in vitro and in vivo models, namely pathogenic species for humans implicated in visceral (L. donovani, L. infantum) and cutaneous leishmaniasis (L. braziliensis, L. major, L. enriettii, L. mexicana), African sleeping sickness (T. brucei), and Chagas disease (T. cruzi). Several hundred naturally occurring flavonoids and their synthetic analogues were selected from a literature survey combining flavonoids exhibiting IC50 values smaller than 50 µM in one or more of the commonly used assays for antileishmanial or antitrypanosomal activity assessment. The trend of this survey indicates that the most active compounds against Leishmania spp. belong to chalcone, biflavone, and aurone classes, regardless of the performed assay. Few compounds of these classes exhibit submicromolar antileishmanial activity against axenic or intracellular amastigotes with no in vitro cytotoxicity. Flavones and flavonols are globally less active than chalcones, biflavones, and aurones. Flavones, flavan-3-ols, and isoflavones are less studied and less active. The most promising compounds against Trypanosoma brucei belong to synthetic chalcone, isoflavan, and isoflavanol classes, displaying submicromolar activities on trypomastigotes and selectivity indexes hundred times higher. On T. cruzi, flavan-3-ols are the most potent compounds, followed by flavones and flavonols. Globally, fewer compounds have been evaluated on T. cruzi than on T. brucei, and their activities and selectivity are often lower.

Keywords

Flavonoid Leishmania Trypanosoma Chalcone Aurone Flavonol Isoflavonoid 

References

  1. Ahmed MS, Galal AM, Ross SA et al (2001) A weakly antimalarial biflavanone from Rhus retinorrhoea. Phytochemistry 58:599–602Google Scholar
  2. Akimanya A, Midiwo JO, Matasyoh J et al (2015) Two polymethoxylated flavonoids with antioxidant activities and a rearranged clerodane diterpenoid from the leaf exudates of Microglossa pyrifolia. Phytochem Lett 11:183–187Google Scholar
  3. Almutairi S, Edrada-Ebel R, Fearnley J et al (2014) Isolation of diterpenes and flavonoids from a new type of propolis from Saudi Arabia. Phytochem Lett 10:160–163Google Scholar
  4. Aponte JC, Verástegui M, Málaga E et al (2008) Synthesis, cytotoxicity, and anti- Trypanosoma cruzi activity of new chalcones. J Med Chem 51:6230–6234Google Scholar
  5. Beer MF, Frank FM, Germán Elso O, et al (2016) Trypanocidal and leishmanicidal activities of flavonoids isolated from Stevia satureiifolia var. satureiifolia. Pharm Biol:1–8Google Scholar
  6. Bello ML, Chiaradia LD, Dias LRS et al (2011) Trimethoxy-chalcone derivatives inhibit growth of Leishmania braziliensis: Synthesis, biological evaluation, molecular modeling and structure-activity relationship (SAR). Bioorg Med Chem 19:5046–5052Google Scholar
  7. Boeck P, Falcao CAB, Leal PC et al (2006) Synthesis of chalcone analogues with increased antileishmanial activity. Bioorg Med Chem 14:1538–1545Google Scholar
  8. Bonnet J, Boudot C, Courtioux B (2015) Overview of the diagnostic methods used in the field for human African Trypanosomiasis: what could change in the next years? Biomed Res Int 2015:1–10Google Scholar
  9. Borges-Argaez R, Balnbury L, Flowers A et al (2007) Cytotoxic and antiprotozoal activity of flavonoids from Lonchocarpus spp. Phytomedicine 14:530–533Google Scholar
  10. Borges-Argaez R, Vela-Catzin T, Yam-Puc A et al (2009) Antiprotozoal and cytotoxic studies on some isocordoin derivatives. Planta Med 75:1336–1338Google Scholar
  11. Bourjot M, Apel C, Martin M-T et al (2010) Antiplasmodial, antitrypanosomal, and cytotoxic activities of prenylated flavonoids isolated from the stem bark of Artocarpus styracifolius. Planta Med 76:1600–1604Google Scholar
  12. Bruneton J, Poupon E (2016) Pharmacognosie : Phytochimie, plantes médicinales, 5e ednGoogle Scholar
  13. Carvalho SA, Feitosa LO, Soares M et al (2012) Design and synthesis of new (E)-cinnamic N-acylhydrazones as potent antitrypanosomal agents. Eur J Med Chem 54:512–521Google Scholar
  14. Center for Disease Control and Prevention (2015a) Parasites—Leishmaniasis. http://www.cdc.gov/parasites/leishmaniasis/biology.html. Accessed 11 July 2016
  15. Center for Disease Control and Prevention (2015b) Parasites—African Trypanosomiasis (also known as Sleeping Sickness). http://www.cdc.gov/parasites/sleepingsickness/biology.html. Accessed 12 July 2016
  16. Center for Disease Control and Prevention (2015c) Parasites - American Trypanosomiasis (also known as Chagas Disease). http://www.cdc.gov/parasites/chagas/biology.html. Accessed 11 July 2016
  17. Chatelain E (2015) Chagas disease drug discovery: toward a new era. J Biomol Screen 20:22–35Google Scholar
  18. Chen M, Broegger Christensen S, Blom J et al (1993) Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania. Antimicrob Agents Chemother 37:2550–2556Google Scholar
  19. Chen M, Broegger Christensen S, Theander TG, Kharazmi A (1994) Antileishmanial activity of licochalcone A in mice infected with Leishmania major and in hamsters infected with Leishmania donovani. Antimicrob Agents Chemother 38:1339–1344Google Scholar
  20. da Rocha CQ, Queiroz EF, Meira CS et al (2014) Dimeric flavonoids from Arrabidaea brachypoda and assessment of their anti-Trypanosoma cruzi activity. J Nat Prod 77:1345–1350Google Scholar
  21. de Mello TFP, Bitencourt HR, Pedroso RB et al (2014) Leishmanicidal activity of synthetic chalcones in Leishmania (Viannia) braziliensis. Exp Parasitol 136:27–34Google Scholar
  22. del Rayo Camacho M, Phillipson JD, Croft SL et al (2002) Assessment of the antiprotozoal activity of Galphimia glauca and the isolation of new nor-secofriedelanes and nor-friedelanes. J Nat Prod 65:1457–1461Google Scholar
  23. del Rayo Camacho M, Phillipson JD, Croft SL et al (2004) in vitro antiprotozoal and cytotoxic activities of some alkaloids, quinones, flavonoids, and coumarins. Planta Med 70:70–72Google Scholar
  24. dos Santos DAP, Braga PA de C, da Silva MF das GF et al (2009) Anti-African trypanocidal and antimalarial activity of natural flavonoids, dibenzoylmethanes and synthetic analogues. J Pharm Pharmacol 61:257–266Google Scholar
  25. Flores N, Cabrera G, Jimenez IA et al (2007) Leishmanicidal constituents from the leaves of Piper rusbyi. Planta Med 73:206–211Google Scholar
  26. Fonseca-Silva F, Inacio JDF, Canto-Cavalheiro MM, Almeida-Amaral EE (2011) Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PLoS ONE 6:e14666Google Scholar
  27. Ganapaty S, Pannakal ST, Srilakshmi GVK et al (2008) Pumilanol, an antiprotozoal isoflavanol from Tephrosia pumila. Phytochem Lett 1:175–178Google Scholar
  28. George VC, Vijesh VV, Dehigaspege AI, Lakshmi CA, Anbarasu K, Kumar DR, Ethiraj R, Kumar RA, Rupasinghe HP et al (2016) Mechanism of action of flavonoids in prevention of inflammation-associated skin cancer. Curr Med Chem.  https://doi.org/10.2174/0929867323666160627110342
  29. Güida MC, Esteva MI, Camino A et al (2007) Trypanosoma cruzi: In vitro and in vivo antiproliferative effects of epigallocatechin gallate (EGCg). Exp Parasitol 117:188–194Google Scholar
  30. Gupta S, Nishi (2011) Visceral leishmaniasis: experimental models for drug discovery. Indian J Med Res 133:27–39Google Scholar
  31. Gupta S, Shivahare R, Korthikunta V et al (2014) Synthesis and biological evaluation of chalcones as potential antileishmanial agents. Eur J Med Chem 81:359–366.Google Scholar
  32. Hata Y, Ebrahimi SN, De Mieri M et al (2014) Antitrypanosomal isoflavan quinones from Abrus precatorius. Fitoterapia 93:81–87Google Scholar
  33. Hata Y, Raith M, Ebrahimi SN et al (2013) Antiprotozoal isoflavan quinones from Abrus precatorius ssp. africanus. Planta Med 79:492–498Google Scholar
  34. Hermoso A, Jiménez IA, Mamani ZA et al (2003) Antileishmanial activities of dihydrochalcones from piper elongatum and synthetic related compounds. Structural requirements for activity. Bioorganic Med Chem 11:3975–3980Google Scholar
  35. Hoet S, Opperdoes F, Brun R, Quetin-Leclercq J et al (2004) Natural products active against African trypanosomes: a step towards new drugs. Nat Prod Rep 21:353–364Google Scholar
  36. Ichino C, Kiyohara H, Soonthornchareonnon N et al (2006) Antimalarial activity of biflavonoids from Ochna integerrima. Planta Med 72:611–614Google Scholar
  37. Jones AJ, Grkovic T, Sykes ML, Avery VM et al (2013) Trypanocidal activity of marine natural products. Mar Drugs 11:4058–4082Google Scholar
  38. Kayser O, Kiderlen AF (2001) In vitro leishmanicidal activity of naturally occurring chalcones. Phyther Res 15:148–152Google Scholar
  39. Kayser O, Kiderlen AF, Folkens U, Kolodziej H (1999) In vitro leishmanicidal activity of aurones. Planta Med 65:316–319Google Scholar
  40. Kirmizibekmez H, Atay I, Kaiser M et al (2011) Antiprotozoal activity of Melampyrum arvense and its metabolites. Phytother Res 25:142–146Google Scholar
  41. Kirmizibekmez H, Çalis I, Perozzo R et al (2004) Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP reductase, a crucial enzyme in fatty acid biosynthesis. Planta Med 70:711–717Google Scholar
  42. Kumar A (2013) Leishmania and leishmaniasis. Springer, New YorkGoogle Scholar
  43. Kunert O, Swamy RC, Kaiser M et al (2008) Antiplasmodial and leishmanicidal activity of biflavonoids from Indian Selaginella bryopteris. Phytochem Lett 1:171–174Google Scholar
  44. Langousis G, Hill KL (2014) Motility and more: the flagellum of Trypanosoma brucei. Nat Rev Micro 12:505–518. doi:10.1038/nrmicro3274, http://www.nature.com/nrmicro/journal/v12/n7/abs/nrmicro3274.html#supplementary-information
  45. Lee M-J, Maliakal P, Chen L et al (2002) Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiol Biomarkers Prev A Publ Am Assoc Cancer Res Cosponsored by Am Soc Prev Oncol 11:1025–1032Google Scholar
  46. Lunardi F, Guzela M, Rodrigues AT et al (2003) Trypanocidal and leishmanicidal properties of substitution-containing chalcones. Antimicrob Agents Chemother 47:1449–1451Google Scholar
  47. Llurba Montesino N, Kaiser M, Brun R, Schmidt TJ et al (2015) Search for antiprotozoal activity in herbal medicinal preparations; new natural leads against neglected tropical diseases. Molecules 20:14118–14138Google Scholar
  48. Mai LH, Chabot GG, Grellier P et al (2015) Antivascular and anti-parasite activities of natural and hemisynthetic flavonoids from New Caledonian Gardenia species (Rubiaceae). Eur J Med Chem 93:93–100Google Scholar
  49. Mamadalieva NZ, Herrmann F, El-Readi MZ et al (2011) Flavonoids in Scutellaria immaculata and S. ramosissima (Lamiaceae) and their biological activity. J Pharm Pharmacol 63:1346–1357Google Scholar
  50. Marin C, Boutaleb-Charki S, Diaz JG et al (2009) Antileishmaniasis activity of flavonoids from consolida oliveriana. J Nat Prod 72:1069–1074Google Scholar
  51. Marín C, Ramírez-Macías I, López-Céspedes A et al (2011) In vitro and in vivo trypanocidal activity of flavonoids from Delphinium staphisagria against Chagas disease. J Nat Prod 74:744–750Google Scholar
  52. Mbwambo ZH, Kapingu MC, Moshi MJ et al (2006) Antiparasitic activity of some xanthones and biflavonoids from the root bark of Garcinia livingstonei. J Nat Prod 69:369–372Google Scholar
  53. Min-Hsiung P, Ching-Shu L, Chi-Tang H et al (2010) Anti-inflammatory activity of natural dietary flavonoids. Food Funct 1:15–31Google Scholar
  54. Morrot A, Villar SR, Gonzalez FB, Perez AR (2016) Evasion and immuno-endocrine regulation in parasite infection: two sides of the same coin in Chagas disease? Front Microbiol 7:704Google Scholar
  55. Nabavi SF, Sureda A, Daglia M, Izadi M, Sobarzo-Sánchez E, Rastrelli L, Nabavi SM et al (2016) Flavonoids and Chagas’ disease: the story so far! Curr Top Med ChemGoogle Scholar
  56. Nielsen SF, Christensen SB, Cruciani G et al (1998) Antileishmanial Chalcones: Statistical Design, Synthesis, and Three-Dimensional Quantitative Structure-Activity Relationship Analysis. J Med Chem 41:4819–4832Google Scholar
  57. Nour AMM, Khalid SA, Kaiser M et al (2010) The antiprotozoal activity of methylated flavonoids from Ageratum conyzoides L. J Ethnopharmacol 129:127–130Google Scholar
  58. Ntie-Kang F, Amoa Onguéné P, Lifongo LL, Ndom JC, Sippl W, Meva’a Mbaze L et al (2014) The potential of anti-malarial compounds derived from African medicinal plants, part II: a pharmacological evaluation of non-alkaloids and non-terpenoids. Malaria J 13:81Google Scholar
  59. Nwodo N, Okoye F, Lai D et al (2015) Evaluation of the in vitro trypanocidal activity of methylated flavonoid constituents of Vitex simplicifolia leaves. BMC Complement Altern Med 15:82Google Scholar
  60. Omar RMK, Igoli J, Gray AI et al (2016) Chemical characterisation of Nigerian red propolis and its biological activity against Trypanosoma brucei. Phytochem Anal 27:107–115Google Scholar
  61. Passalacqua TG, Dutra LA, de Almeida L et al (2015) Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds. Bioorg Med Chem Lett 25:3342–3345Google Scholar
  62. Paveto C, Guida MC, Esteva MI et al (2004) Anti-Trypanosoma cruzi Activity of Green Tea (Camellia sinensis) Catechins. Antimicrob Agents Chemother 48:69–74Google Scholar
  63. Qiao Z, Wang Q, Zhang F et al (2012) Chalcone–benzoxaborole hybrid molecules as potent antitrypanosomal agents. J Med Chem 55:3553–3557Google Scholar
  64. Ramirez-Macias I, Marin C, Diaz JG et al (2012) Leishmanicidal activity of nine novel flavonoids from Delphinium staphisagria. Sci World J 2012:10Google Scholar
  65. Rizk YS, de Arruda CCP, Fischer A et al (2014) In vitro activity of the hydroethanolic extract and biflavonoids isolated from Selaginella sellowii on Leishmania (Leishmania) amazonensis. Mem Inst Oswaldo Cruz 109:1050–1056Google Scholar
  66. Robertson LJ, Devleesschauwer B, Alarcon de Noya B et al (2016) Trypanosoma cruzi: time for international recognition as a foodborne parasite. PLoS Negl Trop Dis 10:e0004656Google Scholar
  67. Rosenzweig D, Smith D, Opperdoes F et al (2008) Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J 22:590–602Google Scholar
  68. Roussaki M, Hall B, Lima SC et al (2013) Synthesis and anti-parasitic activity of a novel quinolinone-chalcone series. Bioorg Med Chem Lett 23:6436–6441Google Scholar
  69. Roussaki M, Lima SC, Kypreou A-M et al (2012) Aurones, a promising heterocyclic scaffold for the development of potent antileishmanial agents. Int J Med Chem 2012:8 ppGoogle Scholar
  70. Rudrapaul P, Sarma IS, Das N et al (2014) New flavonol methyl ether from the leaves of Vitex peduncularis exhibits potential inhibitory activity against Leishmania donovani through activation of iNOS expression. Eur J Med Chem 87:328–335Google Scholar
  71. Ruiz C, Haddad M, Alban J et al (2011) Activity-guided isolation of antileishmanial compounds from Piper hispidum. Phytochem Lett 4:363–366Google Scholar
  72. Salem MM, Capers J, Rito S, Werbovetz K a (2011) Antiparasitic Activity of C-Geranyl Flavonoids from Mimulus bigelovii. Phyther Res 25:1246–1249Google Scholar
  73. Salem MM, Werbovetz KA (2006) Isoflavonoids and other compounds from Psorothamnus arborescens with antiprotozoal activities. J Nat Prod 69:43–49Google Scholar
  74. Salem MM, Werbovetz KA (2005) Antiprotozoal compounds from Psorothamnus polydenius. J Nat Prod 68:108–111Google Scholar
  75. Salvador MJ, Sartori FT, Sacilotto ACBC et al (2009) Bioactivity of flavonoids isolated from Lychnophora markgravii against Leishmania amazonensis amastigotes. Z Naturforsch C 64:509–512Google Scholar
  76. Sandjo LP, de Moraes MH, Kuete V et al (2016) Individual and combined antiparasitic effect of six plant metabolites against Leishmania amazonensis and Trypanosoma cruzi. Bioorg Med Chem Lett 26:1772–1775Google Scholar
  77. Schmidt TJ, Khalid SA, Romanha AJ, Alves TM, Biavatti MW, Brun R, Da Costa FB, de Castro SL, Ferreira VF, de Lacerda MV, Lago JH, Leon LL, Lopes NP, das Neves Amorim RC, Niehues M, Ogungbe IV, Pohlit AM, Scotti MT, Setzer WN, de N C Soeiro M, Steindel M, Tempone AG, et al (2012) The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases—part I. Curr Med Chem 19:2128–2175Google Scholar
  78. Schmidt TJ, Khalid SA, Romanha AJ, Alves TM, Biavatti MW, Brun R, Da Costa FB, de Castro SL, Ferreira VF, de Lacerda MV, Lago JH, Leon LL, Lopes NP, das Neves Amorim RC, Niehues M, Ogungbe IV, Pohlit AM, Scotti MT, Setzer WN, de N C Soeiro M, Steindel M, Tempone AG, et al (2012a) The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases—part II. Curr Med Chem 19:2176–2228Google Scholar
  79. Schmidt TJ, Rzeppa S, Kaiser M, Brun R (2012c) Larrea tridentata—Absolute configuration of its epoxylignans and investigations on its antiprotozoal activity. Phytochem Lett 5:632–638Google Scholar
  80. Steinmann P, Stone CM, Sutherland CS et al (2015) Contemporary and emerging strategies for eliminating human African trypanosomiasis due to Trypanosoma brucei gambiense: review. Trop Med Int Heal 20:707–718Google Scholar
  81. Suarez AI, Diaz MB, Delle Monache F, Compagnone RS (2003) Biflavonoids from Podocalyx loranthoides. Fitoterapia 74:473–475Google Scholar
  82. Sülsen VP, Cazorla SI, Frank FM et al (2007) Trypanocidal and leishmanicidal activities of flavonoids from Argentine medicinal plants. Am J Trop Med Hyg 77:654–659PubMedGoogle Scholar
  83. Sundar S, Chakravarty J (2014) An update on pharmacotherapy for leishmaniasis. Expert Opin Pharmacother 16:1–16Google Scholar
  84. Sutherland CS, Yukich J, Goeree R, Tediosi F (2015) A literature review of economic evaluations for a neglected tropical disease: human African trypanosomiasis (“sleeping sickness”). PLoS Negl Trop Dis 9:e0003397Google Scholar
  85. Sykes ML, Avery VM (2013) Approaches to protozoan drug discovery: phenotypic screening: Miniperspectives series on phenotypic screening for antiinfective targets. J Med Chem 56:7727–7740CrossRefPubMedGoogle Scholar
  86. Tasdemir D, Kaiser M, Brun R et al (2006) Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob Agents Chemother 50:1352–1364Google Scholar
  87. Torres-santos EC, Moreira DL, Kaplan AC et al (1999) Methoxychalcone isolated from Piper aduncum on Leishmania amazonensis Selective Effect of 2J, 6J-Dihydroxy-4J-Methoxychalcone isolated from Piper aduncum on Leishmania amazonensis. Antimicrob Agents Chemother 43:1234–1241Google Scholar
  88. Troeberg L, Chen X, Flaherty TM et al (2000) Chalcone, acyl hydrazide, and related amides kill cultured Trypanosoma brucei brucei. Mol Med 6:660–669PubMedPubMedCentralGoogle Scholar
  89. van Baren C, Anao I, Leo Di Lira P et al (2006) Triterpenic acids and flavonoids from Satureja parvifolia. Evaluation of their antiprotozoal activity. Z Naturforsch C 61:189–192Google Scholar
  90. Weniger B, Vonthron-Senecheau C, Arango GJ et al (2004) A bioactive biflavonoid from Campnosperma panamense. Fitoterapia 75:764–767Google Scholar
  91. Weniger B, Vonthron-Senecheau C, Kaiser M et al (2006) Comparative antiplasmodial, leishmanicidal and antitrypanosomal activities of several biflavonoids. Phytomedicine 13:176–180Google Scholar
  92. WHO (2010) Control of the leishmaniases. World Health Organ Tech Rep Ser 22–26Google Scholar
  93. WHO (2016a) Trypanosomiasis, human African (sleeping sickness). http://www.who.int/mediacentre/factsheets/fs259/en/. Accessed 12 Jul 2016
  94. WHO (2016b) Chagas disease (American trypanosomiasis). http://www.who.int/mediacentre/factsheets/fs340/en/. Accessed 11 July 2016
  95. Zhai L, Chen M, Blom J et al (1999) The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. J Antimicrob Chemother 43:793–803Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Flore Nardella
    • 1
  • Jean-Baptiste Gallé
    • 2
  • Mélanie Bourjot
    • 2
  • Bernard Weniger
    • 2
  • Catherine Vonthron-Sénécheau
    • 2
  1. 1.Laboratoire d’Innovation Thérapeutique UMR CNRS 7200Faculty of Pharmacy, University of StrasbourgIllkirch CedexFrance
  2. 2.Laboratoire d’Innovation Thérapeutique UMR CNRS 7200Faculty of Pharmacy, University of StrasbourgIllkirchFrance

Personalised recommendations