Sustainability of Living Wall Systems Through An Ecosystem Services Lens

  • F. LarcherEmail author
  • L. Battisti
  • L. Bianco
  • R. Giordano
  • E. Montacchini
  • V. Serra
  • S. Tedesco
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 18)


The use of plants for shading the buildings having a pleasant ornamental effect is known for a long time. During the last decade, ecosystem services approach opens the way to analyze the multiple advantages that greening, included living walls, can provide to the urban environment. Regarding living walls, the main environmental benefits are heat island effect mitigation, noise pollution insulation, heating and cooling energy demand reduction, absorption of particulate matters, and enhancement of biodiversity. Living walls can also have a role in ameliorating physical and mental health and well-being and can be included in the urban horticulture initiatives both for food production and education purposes. Needing for recycled and low energy products for a greater environmental sustainability is also required in living wall systems (LWS). Therefore, the life cycle approach is considered as useful. The chapter is a critical review aimed at analyzing the environmental, social and economic sustainability of LWS for urban design. The multidisciplinary approach, carried out by agronomists and architects, allows to understand the problems and solutions for the improvement of the use of these systems in our cities. The research group is working on sustainable green wall systems that provide architectural and environmental benefits through the use of independent modular units, renewable materials, environmental friendly substrates, and native plants.


Acoustic performance Air quality Building energy efficiency Cultural service Ecosystem service Green wall Mitigation of UHI Urban design 


  1. Alexandri E, Jones P (2008) Temperature decreases in a urban canyon due to green walls and green roofs in diverse climate. Build Environ 43(4):480–493CrossRefGoogle Scholar
  2. Azkorra Z, Pérez G, Coma J, Cabeza LF, Bures S, Alvaro JE, Erkoreka A, Urrestarazu M (2015) Evaluation of green walls as a passive acoustic insulation system for buildings. Appl Acoust 89:46–56CrossRefGoogle Scholar
  3. Beatley T (2011) Biophillic cities. Integrating nature into urban design and planning. Island PressGoogle Scholar
  4. Bellomo A (2003) Pareti verdi-Linee guida alla progettazione. SE, NapoliGoogle Scholar
  5. Benvenuti S, Malandrin V, Pardossi A (2016) Germination ecology of wild living walls for sustainable vertical garden in urban environment. Sci Hortic 203:185–191CrossRefGoogle Scholar
  6. Bianco L, Serra V, Larcher F, Perino M (2016) Thermal behaviour assessment of a novel vertical greenery module system: first results of a long-term monitoring campaign in an outdoor test cell. Energ Effi 1–14Google Scholar
  7. Bit E (2012) L’approccio idrico al sistema vegetale: il sistema automatizzato d’irrigazione. In: Il nuovo verde verticale. Tecnologie, progetti, linee guida. Wolters Kluwer Italia, Milano, p 243Google Scholar
  8. Blanc P (2012) The vertical garden: from nature to the city. W. W. Norton & Company, New YorkGoogle Scholar
  9. Bolund P, Hunhammar S (1999) Ecosystem services in urban areas. Ecol Econ 29:293–301CrossRefGoogle Scholar
  10. Bringslimark T, Hartig T, Patil GG (2009) Psychological benefits of indoor plants in workplaces: putting experimental results into context. HortScience 42:581–587Google Scholar
  11. Buccolieri R, Gromke C, Di Sabatino S, Ruck B (2009) Aerodynamic effects of trees on pollutant concentration in street canyons. Sci Total Environ 407:5247–5256CrossRefPubMedGoogle Scholar
  12. Coma J, Pérez G, de Gracia A, Burés S, Urrestarazu M, Cabeza FL (2017) Vertical greenery systems for energy savings in buildings: a comparative study between green walls and green facades. Build Environ 111:228–237CrossRefGoogle Scholar
  13. Costanza R, d’Arge R, de Groot RS, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  14. Devecchi M, Merlo F, Vigetti A, Larcher F (2013) The cultivation of mediterranean aromatic plants on green walls. Acta Hortic 999:243–247CrossRefGoogle Scholar
  15. Djedjig R, Bozonnet E, Belarbi R (2016) Modeling green wall interactions with street canyons for building energy simulation in urban context. Urban Clim 16:75–85CrossRefGoogle Scholar
  16. Dunnett N, Kingsbury N (2004) Planting green roofs and living walls. Timber Press, PortlandGoogle Scholar
  17. Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Schewenius M, Sendstad M, Seto KC, Wilkinson C (2013) Urbanization, biodiversity and ecosystem services: challenges and opportunities. A global assessment. Springer, Dordrecht, Heidelberg, New York, London, pp 3–4Google Scholar
  18. Elmqvist T, Setälä H, Handel SN, van der Ploeg S, Aronson J, Blignaut JN, Gómez-Baggethun Nowak EDJ, Kronenberg J, de Groot R (2015) Benefits of restoring ecosystem services in urban areas. Curr Opin Environ Sustain 14:101–108CrossRefGoogle Scholar
  19. Feng H, Hewage K (2014) Lifecycle assessment of living walls: air purification and energy performance. J Clean Prod 69:91–99CrossRefGoogle Scholar
  20. Francis RA, Chadwick MA (2012) What makes a species synurbic? Appl Geogr 32:514–521CrossRefGoogle Scholar
  21. Francis RA, Lorimer J (2011) Urban reconciliation ecology: the potential of living roofs and walls. J Environ Manage 92:1429–1437CrossRefPubMedGoogle Scholar
  22. Giordano R, Montacchini E, Tedesco S, Perone A (2017) Living wall systems: a technical standard proposal. Energy Procedia 111:298–307CrossRefGoogle Scholar
  23. Ivarsson CT, Hagerhall CM (2008) The perceived restorativeness of gardens—assessing the restorativeness of a mixed built and natural scene type. Urban For Urban Greening 7(2):107–118CrossRefGoogle Scholar
  24. James W (1892) Psychology: the briefer course. Henry Holt & Company, New YorkGoogle Scholar
  25. Jim CY (2015) Greenwall classification and critical design-management assessments. Ecol Eng 77:348–362CrossRefGoogle Scholar
  26. Kuo FE, Sullivan WC (2001) Environment and crime in the inner city does vegetation reduce crime? Environ Behav 33(3):343–367Google Scholar
  27. Larcher F, Scariot V (2009) Assessment of partial peat substitutes for the production of Camellia japonica. HortScience 44(2):312–316Google Scholar
  28. Loh S (2008) Living walls—a way to green the built environment. BEDP Environ Des Guide, 1(TEC 26) 1–7Google Scholar
  29. López-Cuadrado MC, Ruiz-Fernández J, Masaguer A (2006) Producción De Planta Ornamental En Contenedor Con Sustratos Alternativos a La Turba. IMIDRA, Madrid Espa˜naGoogle Scholar
  30. López-Rodríguez G, Pérez-Esteban J, Ruiz-Fernández J, Masaguer A (2016) Behavior and evolution of sustainable organic substrates in a vertical garden. Ecol Eng 93:129–134CrossRefGoogle Scholar
  31. Manso M, Castro-Gomes J (2015) Green wall systems: a review of their characteristics. Renew Sustain Energy Rev 41:863–871CrossRefGoogle Scholar
  32. Mårtensson L-M, Wuolo A, Fransson A-M, Emilsson T (2014) Plant performance in living wall systems in the Scandinavian climate. Ecol Eng 71:610–614CrossRefGoogle Scholar
  33. Mårtensson L-M, Fransson A-M, Emilsson T (2016) Exploring the use of edible and evergreen perennials in living wall systems in the Scandinavian climate. Urban For Urban Greening 15:84–88CrossRefGoogle Scholar
  34. Masaguer-Rodríguez A, López-Fabal A, Carmona-Chiara E, Fornés-Sebastiá F, Ordovás-Ascaso J, Gómez-Sánchez MA, Moreno-Aguirre MT, Marfá-Pagès O, Cáceres-Reyes R, López-Nú˜ nez R, Belda R (2015) Uso del compost como componente de sustratos para cultivo en contenedor. Tomo 2. Recursos Orgánicos: Aspectos Agronómicos Y Medioambientales, vol III. Mundi Prensa, Espa˜ na, p 244Google Scholar
  35. Millennium Ecosystem Assessment (2003) Ecosystems and human well-being: a framework for assessment. Island Press, Washington, pp 71–83Google Scholar
  36. Ottelé M, Perini K, Fraaij ALA, Haas EM, Raiteri R (2011) Comparative life cycle analysis for green façades and living wall systems. Energy and Build 43(12):3419–3429CrossRefGoogle Scholar
  37. Pérez G, Coma J, Martorell I, Cabeza LF (2014) Vertical greenery systems (VGS) for energy saving in buildings: a review. Renew Sustain Energy Rev 39:139–165CrossRefGoogle Scholar
  38. Pérez G, Coma J, Barreneche C, de Gracia A, Urrestarazu M, Burés S, Cabeza LF (2016) Acoustic insulation capacity of vertical greenery systems for buildings. Appl Acoust 110:218–226CrossRefGoogle Scholar
  39. Perini K (2013) Progettare il verde in città. Franco Angeli, MilanoGoogle Scholar
  40. Perini K, Rosasco P (2013) Cost-benefit analysis for green façades and living wall systems. Build Environ 70:110–121CrossRefGoogle Scholar
  41. Perini K, Ottelé M, Fraaij ALA, Haas EM, Raiteri R (2011) Vertical greening systems and the effect on air flow and temperature on the building envelope. Build Environ 46(11):2287–2294CrossRefGoogle Scholar
  42. Pouyat RV, Yesilonis ID, Golubiewski N (2009) A comparison of soil organic carbon stocks between residential turfgrass and native soil. Urban Ecosyst 12:45–62CrossRefGoogle Scholar
  43. Pouyat RV, Yesilonis ID, Nowak DJ (2006) Carbon storage by urban soils in the United States. J Environ Qual 35:1566–1575CrossRefPubMedGoogle Scholar
  44. Pugh TAM, MacKenzie AR, Whyatt JD, Hewitt CN (2012) Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ Sci Technol 46(14):7692–7699CrossRefPubMedGoogle Scholar
  45. Serra V, Candelari E, Giordano R (2014) Vertical greening systems and urban heat island related aspects: outcomes of a research project. In: Third international conference on countermeasures to urban heat island, Venezia, 13–15 ottobre 2014, pp 1410–1421Google Scholar
  46. Serra V, Bianco L, Candelari E, Giordano R, Montacchini E, Tedesco S, Larcher F, Schiavi A (2017) A novel vertical greenery module system for building envelopes: The results and outcomes of a multidisciplinary research project. Energy Build 146:333–352CrossRefGoogle Scholar
  47. Shaikh AF, Gunjal PK, Chaple NV (2015) A review on green walls technology, benefits and design. Int J Eng Sci Res Technol 4(4)Google Scholar
  48. Sheweka SM, Mohamed NM (2012) Green Facades as a new sustainable approach towards climate change. Energy Procedia 18:507–520CrossRefGoogle Scholar
  49. Sullivan WC, Kuo FE, Depooter SF (2004) The fruit of urban nature vital neighborhood spaces. Environ Behav 36(5):678–700CrossRefGoogle Scholar
  50. TEEB—The Economics of Ecosystems and Biodiversity (2011) TEEB manual for cities: ecosystem services in urban managementGoogle Scholar
  51. Ulrich RS (1981) Natural versus urban scenes: some psychophysiological effects. Environ Behav 13:523–556CrossRefGoogle Scholar
  52. Ulrich RS, Zimring C, Zhu X, Du Bose J, Seo HB, Choi YS, Quan X, Anjali J (2008) A review of the research literature on evidence-based healthcare design. Health Environ Res Des 1:61–125Google Scholar
  53. Vos PEJ, Maiheu B, Vankerkom J, Janssen S (2013) Improving local air quality in cities: to tree or not to tree? Environ Pollut 183:113–122CrossRefPubMedGoogle Scholar
  54. Wania A, Bruse M, Blond N, Weber C (2012) Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations. J Environ Manage 94:91–101CrossRefPubMedGoogle Scholar
  55. Weinmaster M (2009) Are green wall as green as they look? An introduction to the various technologies and ecological benefits of green wall. J Green Build 4(4):3–5CrossRefGoogle Scholar
  56. White EV, Gatersleben B (2011) Greenery on residential buildings: does it affect preferences and perceptions of beauty? J Environ Psychol 31(1):89–98CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • F. Larcher
    • 1
    Email author
  • L. Battisti
    • 1
  • L. Bianco
    • 2
  • R. Giordano
    • 3
  • E. Montacchini
    • 3
  • V. Serra
    • 2
  • S. Tedesco
    • 3
  1. 1.Department of Agriculture, Forest and Food SciencesUniversity of TurinTurinItaly
  2. 2.TEBE Research Group, Energy DepartmentPolitecnico di TorinoTurinItaly
  3. 3.Department of Architecture and DesignPolitecnico di TorinoTurinItaly

Personalised recommendations