Advertisement

Arterial Diagnostics

  • Kaspar Trocha
  • Samir K. ShahEmail author
Chapter

Abstract

The diagnosis and treatment of peripheral arterial disease (PAD) is critical to achieving optimal wound healing. This is particularly true of chronic lower extremity wounds, where PAD remains one of most common etiologies. Below we will review a variety of diagnostic modalities including noninvasive vascular labs, cross-sectional imaging techniques, and angiography. Initial diagnosis frequently relies on noninvasive labs, of which the ankle brachial index (ABI) is the cornerstone. Additional noninvasive studies used to confirm disease, assess severity, and identify location are duplex ultrasound (DUS), segmental limb pressures, and pulse volume recordings (PVR).

Once severity of disease is determined, the next step is to plan a management strategy, which often requires cross-sectional imaging, such as computed tomography angiography (CTA) and magnetic resonance angiography (MRA) or catheter-based angiography. Additional studies can estimate the level of tissue perfusion, such as transcutaneous oxygen pressure (TcPO2) as well as novel techniques such as hyperspectral imaging, optical coherence tomography, microvascular oxygen saturation, and skin perfusion pressure. In this chapter we will explore these techniques and the evidence underpinning use and briefly discuss novel diagnostic approaches.

Keywords

Peripheral arterial disease Wound healing Noninvasive studies 

Supplementary material

Video 14.1

Three-dimensional reconstruction of a CT angiogram in a patient with abdominal aortic ectasia and bilateral common iliac artery aneurysms (MOV 3250 kb) (MOV 3250 kb)

Video 14.2

Angiogram demonstrating bilateral proximal common iliac artery stenosis (MOV 1393 kb) (MOV 1393 kb)

References

  1. 1.
    Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382(9901):1329–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Cordero A, Morillas P, Bertomeu-Gonzalez V, Quiles J, Soria F, Guindo J, et al. Pathological ankle-brachial index is equivalent of advanced age in acute coronary syndromes. Eur J Clin Investig. 2011;41(12):1268–74.CrossRefGoogle Scholar
  3. 3.
    Zheng ZJ, Sharrett AR, Chambless LE, Rosamond WD, Nieto FJ, Sheps DS, et al. Associations of ankle-brachial index with clinical coronary heart disease, stroke and preclinical carotid and popliteal atherosclerosis: the Atherosclerosis Risk In Communities (ARIC) Study. Atherosclerosis. 1997;131(1):115–25.PubMedCrossRefGoogle Scholar
  4. 4.
    Diehm C, Allenberg JR, Pittrow D, Mahn M, Tepohl G, Haberl RL, et al. Mortality and vascular morbidity in older adults with asymptomatic versus symptomatic peripheral artery disease. Circulation. 2009;120(21):2053–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Gronewold J, Hermann DM, Lehmann N, Kroger K, Lauterbach K, Berger K, et al. Ankle-brachial index predicts stroke in the general population in addition to classical risk factors. Atherosclerosis. 2014;233(2):545–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Hajibandeh S, Hajibandeh S, Shah S, Child E, Antoniou GA, Torella F. Prognostic significance of ankle brachial pressure index: a systematic review and meta-analysis. Vascular. 2016;25(2):208–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;33(45 Suppl S):S5–67.CrossRefGoogle Scholar
  8. 8.
    Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360.CrossRefGoogle Scholar
  9. 9.
    Shahab H, Shahin H, Sohan S, Emma C, George AA, Francesco T, et al. Prognostic significance of ankle brachial pressure index: A systematic review and meta-analysis. Vascular. 2016; 25(2):208–24Google Scholar
  10. 10.
    Society for Vascular Surgery Lower Extremity Guidelines, Writing G, Conte MS, Pomposelli FB, Clair DG, Geraghty PJ, JF MK, et al. Society for vascular surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J Vasc Surg. 2015;61(3 Suppl):2S–41S.Google Scholar
  11. 11.
    Moyer VA. Force USPST. Screening for peripheral artery disease and cardiovascular disease risk assessment with the ankle-brachial index in adults: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2013;159(5):342–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Crawford F, Welch K, Andras A, Chappell FM. Ankle brachial index for the diagnosis of lower limb peripheral arterial disease. Cochrane Database Syst Rev. 2016;9:CD010680.PubMedGoogle Scholar
  13. 13.
    Wang Z, Hasan R, Firwana B, Elraiyah T, Tsapas A, Prokop L, et al. A systematic review and meta-analysis of tests to predict wound healing in diabetic foot. J Vasc Surg. 2016;63 2 Suppl:29S–36S. e1–2.Google Scholar
  14. 14.
    Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C, et al. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation. 2012;126(24):2890–909.PubMedCrossRefGoogle Scholar
  15. 15.
    Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006;113 11:e463–654.Google Scholar
  16. 16.
    Dormandy JA, Murray GD. The fate of the claudicant – a prospective study of 1969 claudicants. Eur J Vasc Surg. 1991;5(2):131–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Suominen V, Uurto I, Saarinen J, Venermo M, Salenius J. PAD as a risk factor for mortality among patients with elevated ABI – a clinical study. Eur J Vasc Endovasc Surg. 2010;39(3):316–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Hyun S, Forbang NI, Allison MA, Denenberg JO, Criqui MH, Ix JH. Ankle-brachial index, toe-brachial index, and cardiovascular mortality in persons with and without diabetes mellitus. J Vasc Surg. 2014;60(2):390–5.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Carter SA, Tate RB. The value of toe pulse waves in determination of risks for limb amputation and death in patients with peripheral arterial disease and skin ulcers or gangrene. J Vasc Surg. 2001;33(4):708–14.PubMedCrossRefGoogle Scholar
  20. 20.
    Hashimoto T, Ichihashi S, Iwakoshi S, Kichikawa K. Combination of pulse volume recording (PVR) parameters and ankle-brachial index (ABI) improves diagnostic accuracy for peripheral arterial disease compared with ABI alone. Hypertens Res. 2016;39(6):430–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Collins R, Burch J, Cranny G, Aguiar-Ibanez R, Craig D, Wright K, et al. Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review. BMJ. 2007;334(7606):1257.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Collins R, Cranny G, Burch J, Aguiar-Ibanez R, Craig D, Wright K, et al. A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic, lower limb peripheral arterial disease. Health Technol Assess. 2007;11 20:iii–iv, xi–xiii, 1–184.Google Scholar
  23. 23.
    Mandolfino T, Canciglia A, D’Alfonso M, Carmignani A. Infrainguinal revascularization based on duplex ultrasound arterial mapping. Int Angiol. 2006;25(3):256–60.PubMedGoogle Scholar
  24. 24.
    Canciglia A, Mandolfino T. Infrainguinal endovascular procedures based upon the results of duplex scanning. Int Angiol. 2008;27(4):291–5.PubMedGoogle Scholar
  25. 25.
    Sultan S, Tawfick W, Hynes N. Ten-year technical and clinical outcomes in TransAtlantic inter-society consensus II infrainguinal C/D lesions using duplex ultrasound arterial mapping as the sole imaging modality for critical lower limb ischemia. J Vasc Surg. 2013;57(4):1038–45.PubMedCrossRefGoogle Scholar
  26. 26.
    de Vos MS, Bol BJ, Gravereaux EC, Hamming JF, Nguyen LL. Treatment planning for peripheral arterial disease based on duplex ultrasonography and computed tomography angiography: consistency, confidence and the value of additional imaging. Surgery. 2014;156(2):492–502.PubMedCrossRefGoogle Scholar
  27. 27.
    Allard L, Cloutier G, Durand LG, Roederer GO, Langlois YE. Limitations of ultrasonic duplex scanning for diagnosing lower limb arterial stenoses in the presence of adjacent segment disease. J Vasc Surg. 1994;19(4):650–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Oser RF, Picus D, Hicks ME, Darcy MD, Hovsepian DM. Accuracy of DSA in the evaluation of patency of infrapopliteal vessels. J Vasc Interv Radiol. 1995;6(4):589–94.PubMedCrossRefGoogle Scholar
  29. 29.
    Jens S, Koelemay MJ, Reekers JA, Bipat S. Diagnostic performance of computed tomography angiography and contrast-enhanced magnetic resonance angiography in patients with critical limb ischaemia and intermittent claudication: systematic review and meta-analysis. Eur Radiol. 2013;23(11):3104–14.PubMedCrossRefGoogle Scholar
  30. 30.
    Met R, Bipat S, Legemate DA, Reekers JA, Koelemay MJ. Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA. 2009;301(4):415–24.PubMedCrossRefGoogle Scholar
  31. 31.
    Menke J, Larsen J. Meta-analysis: accuracy of contrast-enhanced magnetic resonance angiography for assessing steno-occlusions in peripheral arterial disease. Ann Intern Med. 2010;153(5):325–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Kock MC, Adriaensen ME, Pattynama PM, van Sambeek MR, van Urk H, Stijnen T, et al. DSA versus multi-detector row CT angiography in peripheral arterial disease: randomized controlled trial. Radiology. 2005;237(2):727–37.PubMedCrossRefGoogle Scholar
  33. 33.
    Huegli RW, Aschwanden M, Bongartz G, Jaeger K, Heidecker HG, Thalhammer C, et al. Intraarterial MR angiography and DSA in patients with peripheral arterial occlusive disease: prospective comparison. Radiology. 2006;239(3):901–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Kock MC, Dijkshoorn ML, Pattynama PM, Myriam Hunink MG. Multi-detector row computed tomography angiography of peripheral arterial disease. Eur Radiol. 2007;17(12):3208–22.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    McDonald JS, McDonald RJ, Comin J, Williamson EE, Katzberg RW, Murad MH, et al. Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis. Radiology. 2013;267(1):119–28.PubMedCrossRefGoogle Scholar
  36. 36.
    Koelemay MJ, Lijmer JG, Stoker J, Legemate DA, Bossuyt PM. Magnetic resonance angiography for the evaluation of lower extremity arterial disease: a meta-analysis. JAMA. 2001;285(10):1338–45.PubMedCrossRefGoogle Scholar
  37. 37.
    Kitajima K, Maeda T, Watanabe S, Ueno Y, Sugimura K. Recent topics related to nephrogenic systemic fibrosis associated with gadolinium-based contrast agents. Int J Urol. 2012;19(9):806–11.PubMedCrossRefGoogle Scholar
  38. 38.
    Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243(1):148–57.PubMedCrossRefGoogle Scholar
  39. 39.
    Soulez G, Bloomgarden DC, Rofsky NM, Smith MP, Abujudeh HH, Morgan DE, et al. Prospective cohort study of nephrogenic systemic fibrosis in patients with stage 3-5 chronic kidney disease undergoing MRI with injected Gadobenate Dimeglumine or Gadoteridol. AJR Am J Roentgenol. 2015;205(3):469–78.PubMedCrossRefGoogle Scholar
  40. 40.
    Iida O, Soga Y, Hirano K, Kawasaki D, Suzuki K, Miyashita Y, et al. Long-term results of direct and indirect endovascular revascularization based on the angiosome concept in patients with critical limb ischemia presenting with isolated below-the-knee lesions. J Vasc Surg. 2012;55(2):363–70. e5PubMedCrossRefGoogle Scholar
  41. 41.
    Hessel SJ, Adams DF, Abrams HL. Complications of angiography. Radiology. 1981;138(2):273–81.PubMedCrossRefGoogle Scholar
  42. 42.
    Dariushnia SR, Gill AE, Martin LG, Saad WE, Baskin KM, Caplin DM, et al. Quality improvement guidelines for diagnostic arteriography. J Vasc Interv Radiol. 2014;25(12):1873–81.PubMedCrossRefGoogle Scholar
  43. 43.
    Kashyap VS, Pavkov ML, Bishop PD, Nassoiy SP, Eagleton MJ, Clair DG, et al. Angiography underestimates peripheral atherosclerosis: lumenography revisited. J Endovasc Ther. 2008;15(1):117–25.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Nishanian G, Kopchok GE, Donayre CE, White RA. The impact of intravascular ultrasound (IVUS) on endovascular interventions. Semin Vasc Surg. 1999;12(4):285–99.PubMedGoogle Scholar
  45. 45.
    Nouvong A, Hoogwerf B, Mohler E, Davis B, Tajaddini A, Medenilla E. Evaluation of diabetic foot ulcer healing with hyperspectral imaging of oxyhemoglobin and deoxyhemoglobin. Diabetes Care. 2009;32(11):2056–61.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Rajbhandari SM, Harris ND, Tesfaye S, Ward JD. Early identification of diabetic foot ulcers that may require intervention using the micro lightguide spectrophotometer. Diabetes Care. 1999;22(8):1292–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Castronuovo JJ Jr, Adera HM, Smiell JM, Price RM. Skin perfusion pressure measurement is valuable in the diagnosis of critical limb ischemia. J Vasc Surg. 1997;26(4):629–37.PubMedCrossRefGoogle Scholar
  48. 48.
    Rieber J, Meissner O, Babaryka G, Reim S, Oswald M, Koenig A, et al. Diagnostic accuracy of optical coherence tomography and intravascular ultrasound for the detection and characterization of atherosclerotic plaque composition in ex-vivo coronary specimens: a comparison with histology. Coron Artery Dis. 2006;17(5):425–30.PubMedCrossRefGoogle Scholar
  49. 49.
    Meissner OA, Rieber J, Babaryka G, Oswald M, Reim S, Siebert U, et al. Intravascular optical coherence tomography: comparison with histopathology in atherosclerotic peripheral artery specimens. J Vasc Interv Radiol. 2006;17(2 Pt 1):343–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol. 2002;39(4):604–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of Vascular and Endovascular SurgeryBrigham and Women’s HospitalBostonUSA

Personalised recommendations