Advertisement

BrainSync: An Orthogonal Transformation for Synchronization of fMRI Data Across Subjects

  • Anand A. JoshiEmail author
  • Minqi Chong
  • Richard M. Leahy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10433)

Abstract

We describe a method that allows direct comparison of resting fMRI (rfMRI) time series across subjects. For this purpose, we exploit the geometry of the rfMRI signal space to conjecture the existence of an orthogonal transformation that synchronizes fMRI time series across sessions and subjects. The method is based on the observation that rfMRI data exhibit similar connectivity patterns across subjects, as reflected in the pairwise correlations between different brain regions. The orthogonal transformation that performs the synchronization is unique, invertible, efficient to compute, and preserves the connectivity structure of the original data for all subjects. Similarly to image registration, where we spatially align the anatomical brain images, this synchronization of brain signals across a population or within subject across sessions facilitates longitudinal and cross-sectional studies of rfMRI data. The utility of this transformation is illustrated through applications to quantification of fMRI variability across subjects and sessions, joint cortical clustering of a population and comparison of task-related and resting fMRI.

References

  1. 1.
    Amunts, K., Schleicher, A., Zilles, K.: Cytoarchitecture of the cerebral cortex-more than localization. Neuroimage 37(4), 1061–1065 (2007)CrossRefGoogle Scholar
  2. 2.
    Arslan, S., Ktena, S.I., Makropoulos, A., Robinson, E.C., Rueckert, D., Parisot, S.: Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex. NeuroImage (2017). In PressGoogle Scholar
  3. 3.
    Bhushan, C., Chong, M., Choi, S., Joshi, A.A., Haldar, J.P., Damasio, H., Leahy, R.M.: Temporal non-local means filtering reveals real-time whole-brain cortical interactions in resting fMRI. PLoS ONE 11(7), e0158504 (2016)CrossRefGoogle Scholar
  4. 4.
    Boutin, M., Kemper, G.: On reconstructing n-point configurations from the distribution of distances or areas. Adv. Appl. Math. 32(4), 709–735 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Calhoun, V.D., Liu, J., Adalı, T.: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45(1), S163–S172 (2009)CrossRefGoogle Scholar
  6. 6.
    Fan, Y., Nickerson, L.D., Li, H., Ma, Y., Lyu, B., Miao, X., Zhuo, Y., Ge, J., Zou, Q., Gao, J.: Functional connectivity-based parcellation of the thalamus: an unsupervised clustering method and its validity investigation. Brain Connect. 5(10), 620–630 (2015)CrossRefGoogle Scholar
  7. 7.
    Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)CrossRefGoogle Scholar
  8. 8.
    Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Jesper, L.A., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)CrossRefGoogle Scholar
  9. 9.
    Iraji, A., Calhoun, V.D., Wiseman, N.M., Davoodi-Bojd, E., Avanaki, M.R.N., Haacke, E.M., Kou, Z.: The connectivity domain: analyzing resting state fMRI data using feature-based data-driven and model-based methods. NeuroImage 134, 494–507 (2016)CrossRefGoogle Scholar
  10. 10.
    Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. Section A Cryst. Phys. Diffr. Theor. Gener. Crystallogr. 32(5), 922–923 (1976)CrossRefGoogle Scholar
  11. 11.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Redcay, E., Moran, J.M., Mavros, P.L., Tager-Flusberg, H., Gabrieli, J.D.E., Whitfield-Gabrieli, S.: Intrinsic functional network organization in high-functioning adolescents with autism spectrum disorder. Front. Hum. Neurosci. 7, 573 (2013)CrossRefGoogle Scholar
  13. 13.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)CrossRefGoogle Scholar
  14. 14.
    Shattuck, D.W., Leahy, R.M.: Brainsuite: an automated cortical surface identification tool. Med. Image Anal. 6(2), 129–142 (2002)CrossRefGoogle Scholar
  15. 15.
    Sorkine, O.: Least-squares rigid motion using SVD. Tech. Notes 120(3), 52 (2009)Google Scholar
  16. 16.
    Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1(4), e42 (2005)CrossRefGoogle Scholar
  17. 17.
    Sorkine-Hornung, O., Rabinovich, M.: Least-Squares Rigid Motion Using SVD. Department of Computer Science, ETH Zurich (2016). Technical noteGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anand A. Joshi
    • 1
    Email author
  • Minqi Chong
    • 1
  • Richard M. Leahy
    • 1
  1. 1.Signal and Image Processing InstituteUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations